Skip to main content
SHARE
Publication

Iterative solution of Hermite boundary integral equations...

by Leonard J Gray, Sylvain Nintcheu Fata, Ding Ma
Publication Type
Journal
Journal Name
International Journal for Numerical Methods in Engineering
Publication Date
Page Numbers
337 to 346
Volume
74
Issue
2

An efficient iterative method for the solution of the linear equations arising from a Hermite boundary integral approximation has been developed. Along with equations for the boundary unknowns, the Hermite system incorporates equations for the first-order surface derivatives (gradient) of the potential, and is therefore substantially larger than the matrix for a corresponding linear approximation. However, by exploiting the structure of the Hermite matrix, a two-level iterative algorithm has been shown to provide a very efficient solution algorithm. In this approach, the boundary function unknowns are treated separately from the gradient, taking advantage of the sparsity and near-positive definiteness of the gradient equations. In test problems, the new algorithm significantly reduced computation time compared to iterative solution applied to the full matrix. This approach should prove to be even more effective for the larger systems encountered in three-dimensional analysis, and increased efficiency should come from pre-conditioning of the non-sparse matrix component.