Skip to main content
ORNL’s green solvent enables environmentally friendly recycling of valuable Li-ion battery materials. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory have developed a solvent that results in a more environmentally friendly process to recover valuable materials from used lithium-ion batteries, supports a stable domestic supply chain for new batteries

The proposed Battery Identity Global Passport suggests a scannable QR code or other digital tag affixed to Li-ion batteries to identify materials for efficient end-of-life recycling. Credit: Andy Sproles, ORNL/U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory have devised a method to identify the unique chemical makeup of every lithium-ion battery around the world, information that could accelerate recycling, recover critical materials and resolve a growing waste stream.

Urban climate modeling

Researchers at Oak Ridge National Laboratory have identified a statistical relationship between the growth of cities and the spread of paved surfaces like roads and sidewalks. These impervious surfaces impede the flow of water into the ground, affecting the water cycle and, by extension, the climate.

Water from local creeks now flows through these simulated streams in the Aquatic Ecology Laboratory, providing new opportunities to study mercury pollution and advance solutions. Credit: ORNL, U.S. Dept. of Energy

New capabilities and equipment recently installed at the Department of Energy’s Oak Ridge National Laboratory are bringing a creek right into the lab to advance understanding of mercury pollution and accelerate solutions.

ORNL’s Ramesh Bhave poses in his lab in March 2019. Bhave developed the Membrane Solvent Extraction process, which can be used to recover cobalt and other metals from spent lithium-ion batteries. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Momentum Technologies Inc., a Dallas, Texas-based materials science company that is focused on extracting critical metals from electronic waste, has licensed an Oak Ridge National Laboratory process for recovering cobalt and other metals from spent

Researchers at Oak Ridge National Laboratory shed new light on elusive chemical processes at the liquid-liquid interface during solvent extraction of cobalt (dark blue). Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

Real-time measurements captured by researchers at ORNL provide missing insight into chemical separations to recover cobalt, a critical raw material used to make batteries and magnets for modern technologies.

Researchers discovered the Tennessee cavesnail, Antrorbis tennesseensis, in caves near Oak Ridge National Laboratory. The snail measures in at less than 2 millimeters long. Credit: Nathaniel Shoobs and Matthew Niemiller

Sometimes conducting big science means discovering a species not much larger than a grain of sand.

Costas Tsouris portrait

While Tsouris’ water research is diverse in scope, its fundamentals are based on basic science principles that remain largely unchanged, particularly in a mature field like chemical engineering.

Water and energy are inextricably linked, yet in our 20th-century water systems we use freshwater once then throw it away. With innovations designed to enhance desalination technologies, agricultural runoff, produced water from industry, and inland brackish groundwater that are now seen as untreatable could all be sources of clean, safe, and affordable water.

The National Alliance for Water Innovation, a partnership of the Department of Energy’s Oak Ridge National Laboratory, other national labs, university and private sector partners, has been awarded a five-year, $100 million Energy-Water Desalination Hub by DOE to address water security issues in the United States.

Desalination process

A new method developed at Oak Ridge National Laboratory improves the energy efficiency of a desalination process known as solar-thermal evaporation.