Skip to main content
Susan Hubbard, ORNL’s deputy for science and technology and Can (John) Saygin, senior vice president for research and dean of the graduate college at UTRGV, sign a memorandum of understanding to strengthen research cooperation and establish a collaborative program for undergraduate research and education. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL and the University of Texas Rio Grande Valley, known as UTRGV, have signed a memorandum of understanding to strengthen research cooperation and establish a collaborative program for undergraduate research and education, further cementing hi

Susan Hubbard, diputada de Ciencia y Tecnología en ORNL, Can (John) Saygin, vicepresidente mayor de investigación y decano del Colegio de la Escuela de Postgrados en UTGRV, firman un Memorándum de Entendimiento comprometiéndose a fortalecer la cooperación en la investigación científica y establecer un programa colaborativo para estudiantes de pregrado. Crédito de la fotografía: Carlos Jones/ORNL, U.S. Dept. of Energy

Susan Hubbard, diputada de Ciencia y Tecnología en ORNL, Can (John) Saygin, vicepresidente mayor de investigación y decano del Colegio de la Escuela de Postgrados en UTGRV, firman un Memorándum de Entendimiento comprometiéndose a fortalecer

Connecting  wires to the interface of the topological insulator and superconductor enables probing of novel electronic properties. Researchers aim for qubits based on theorized Majorana particles. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Quantum computers process information using quantum bits, or qubits, based on fragile, short-lived quantum mechanical states. To make qubits robust and tailor them for applications, researchers from the Department of Energy’s Oak Ridge National Laboratory sought to create a new material system.

Madhavi Martin portrait image

Madhavi Martin brings a physicist’s tools and perspective to biological and environmental research at the Department of Energy’s Oak Ridge National Laboratory, supporting advances in bioenergy, soil carbon storage and environmental monitoring, and even helping solve a murder mystery.

CFM’s RISE open fan engine architecture. Image: GE Aerospace

To support the development of a revolutionary new open fan engine architecture for the future of flight, GE Aerospace has run simulations using the world’s fastest supercomputer capable of crunching data in excess of exascale speed, or more than a quintillion calculations per second.

ORNL researchers, from left, Yang Liu, Xiaohan Yang and Torik Islam, collaborated on the development of a new capability to insert multiple genes simultaneously for fast, efficient transformation of plants into better bioenergy feedstocks. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

In a discovery aimed at accelerating the development of process-advantaged crops for jet biofuels, scientists at ORNL developed a capability to insert multiple genes into plants in a single step.

Radu Custelcean's sustainable chemistry for capturing carbon dioxide from air has been licensed to Holocene. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

An innovative and sustainable chemistry developed at ORNL for capturing carbon dioxide has been licensed to Holocene, a Knoxville-based startup focused on designing and building plants that remove carbon dioxide

Steven Hamilton. Credit: Genevieve Martin/ORNL.

As renewable sources of energy such as wind and sun power are being increasingly added to the country’s electrical grid, old-fashioned nuclear energy is also being primed for a resurgence.

UKAEA will provide novel fusion materials to be irradiated in ORNL’s HFIR facility over the next four years. From left, Kathy McCarthy, Jeremy Busby, Mickey Wade, Prof Sir Ian Chapman (UKAEA CEO), Cynthia Jenks and Yutai Kato will represent this new partnership. Not pictured: Dr. Amanda Quadling, UKAEA’s Director of Materials Research Facility. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

ORNL has entered a strategic research partnership with the United Kingdom Atomic Energy Authority, or UKAEA, to investigate how different types of materials behave under the influence of high-energy neutron sources. The $4 million project is part of UKAEA's roadmap program, which aims to produce electricity from fusion.

From left are UWindsor students Isabelle Dib, Dominik Dziura, Stuart Castillo and Maksymilian Dziura at ORNL’s Neutron Spin Echo spectrometer. Their work advances studies on a natural cancer treatment. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

A scientific instrument at ORNL could help create a noninvasive cancer treatment derived from a common tropical plant.