Skip to main content
Researchers used the open-source Community Earth System Model to simulate the effects that extreme climatic conditions have on processes like land carbon storage. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers from Oak Ridge National Laboratory and Northeastern University modeled how extreme conditions in a changing climate affect the land’s ability to absorb atmospheric carbon — a key process for mitigating human-caused emissions. They found that 88% of Earth’s regions could become carbon emitters by the end of the 21st century. 

Steven Hamilton, an R&D scientist in the HPC Methods for Nuclear Applications group at ORNL, leads the ExaSMR project. ExaSMR was developed to run on the Oak Ridge Leadership Computing Facility’s exascale-class supercomputer, Frontier. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

The Exascale Small Modular Reactor effort, or ExaSMR, is a software stack developed over seven years under the Department of Energy’s Exascale Computing Project to produce the highest-resolution simulations of nuclear reactor systems to date. Now, ExaSMR has been nominated for a 2023 Gordon Bell Prize by the Association for Computing Machinery and is one of six finalists for the annual award, which honors outstanding achievements in high-performance computing from a variety of scientific domains.  

A rendering of the CFM RISE program’s open fan architecture. (bottom) A GE visualization of turbulent flow in the tip region of an open fan blade using the Frontier supercomputer at ORNL. Credit: CFM, GE Research (CFM is a 50­–50 joint company between GE and Safran Aircraft Engines)

Outside the high-performance computing, or HPC, community, exascale may seem more like fodder for science fiction than a powerful tool for scientific research. Yet, when seen through the lens of real-world applications, exascale computing goes from ethereal concept to tangible reality with exceptional benefits.

A new nanoscience study led by an ORNL quantum researcher takes a big-picture look at how scientists study materials at the smallest scales. Credit: Getty Images

A new nanoscience study led by a researcher at ORNL takes a big-picture look at how scientists study materials at the smallest scales.

Autonomous additive manufacturing, or AI- guided 3D printing, can accurately estimate the strength and quality of printed components. This system collects information about conditions during production, including temperature, that influence the properties and quality of printed objects. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Autonomous labs are changing the nature of scientific investigation. Instead of humans manually orchestrating every part of an experiment, programmed equipment can carry out necessary functions. This workflow accelerates the pace of discovery by reducing the number of monotonous tasks that researchers must perform.

Ken Engle portrait

It was reading about current nuclear discoveries in textbooks that first made Ken Engle want to work at a national lab. It was seeing the real-world impact of the isotopes produced at ORNL 

 

Eric Myers

Eric Myers of ORNL has been named a senior member of the Institute of Electrical and Electronics Engineers, effective June 21.

Group of attendees at the Quantum Computing User Forum

Hosted by the Quantum Computing Institute and the Oak Ridge Leadership Computing Facility, the fourth annual event brought together over 100 attendees to discuss the latest developments in quantum computing and to learn about results from projects supported by the OLCF’s Quantum Computing User Program.

AIRES 4 attendees hailing from seven national laboratories and from academia met to discuss robust engineering for digital twins. Credit: Pradeep Ramuhalli/ORNL, U.S. Dept. of Energy

ORNL hosted its fourth Artificial Intelligence for Robust Engineering and Science, or AIRES, workshop from April 18-20. Over 100 attendees from government, academia and industry convened to identify research challenges and investment areas, carving the future of the discipline.

ORNL’s Travis Humble, Quantum Science Center director, addresses students during a working lunch. Credit: Teresa Hurt/ORNL, U.S. Dept. of Energy

Quantum computing sits on the cutting edge of scientific discovery. Given its novelty, the next generation of researchers will contribute significantly to the advancement of the field. However, this new crop of scientists must first be cultivated.