Skip to main content
Susan Hubbard, ORNL’s deputy for science and technology and Can (John) Saygin, senior vice president for research and dean of the graduate college at UTRGV, sign a memorandum of understanding to strengthen research cooperation and establish a collaborative program for undergraduate research and education. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL and the University of Texas Rio Grande Valley, known as UTRGV, have signed a memorandum of understanding to strengthen research cooperation and establish a collaborative program for undergraduate research and education, further cementing hi

Susan Hubbard, diputada de Ciencia y Tecnología en ORNL, Can (John) Saygin, vicepresidente mayor de investigación y decano del Colegio de la Escuela de Postgrados en UTGRV, firman un Memorándum de Entendimiento comprometiéndose a fortalecer la cooperación en la investigación científica y establecer un programa colaborativo para estudiantes de pregrado. Crédito de la fotografía: Carlos Jones/ORNL, U.S. Dept. of Energy

Susan Hubbard, diputada de Ciencia y Tecnología en ORNL, Can (John) Saygin, vicepresidente mayor de investigación y decano del Colegio de la Escuela de Postgrados en UTGRV, firman un Memorándum de Entendimiento comprometiéndose a fortalecer

The image conceptualizes the processing, structure and mechanical behavior of glassy ion conductors for solid state lithium batteries. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

As current courses through a battery, its materials erode over time. Mechanical influences such as stress and strain affect this trajectory, although their impacts on battery efficacy and longevity are not fully understood.

ORNL’s David Sholl is director of the new DOE Energy Earthshot Non-Equilibrium Energy Transfer for Efficient Reactions center to help decarbonize the industrial chemical industry. Credit: Genevieve Martin, ORNL/U.S. Dept. of Energy

ORNL has been selected to lead an Energy Earthshot Research Center, or EERC, focused on developing chemical processes that use sustainable methods instead of burning fossil fuels to radically reduce industrial greenhouse gas emissions to stem climate change and limit the crisis of a rapidly warming planet.
 

Screen capture from video illustrating light-activated acid drives energy-efficient, on-demand release of captured CO2

Using light instead of heat, researchers at ORNL have found a new way to release carbon dioxide, or CO2, from a solvent used in direct air capture, or DAC, to trap this greenhouse gas. The novel approach paves the way for economically viable separation of CO2 from the atmosphere.

The Department of Energy’s Oak Ridge National Laboratory announced the establishment of its Center for AI Security Research, or CAISER, to address threats already present as governments and industries around the world adopt artificial intelligence and take advantage of the benefits it promises in data processing, operational efficiencies and decision-making. Credit: Rachel Green/ORNL, U.S. Dept. of Energy

The Department of Energy’s Oak Ridge National Laboratory announced the establishment of the Center for AI Security Research, or CAISER, to address threats already present as governments and industries around the world adopt artificial intelligence and take advantage of the benefits it promises in data processing, operational efficiencies and decision-making.

Construction is underway at ORNL's Spallation Neutron Source. Credit: The Spallation Neutron Source at Oak Ridge National Laboratory — already the world’s most powerful accelerator-based neutron source — will be on a planned hiatus through June 2024 as crews work to upgrade the facility. Credit: Brett Riffert/ORNL, U.S. Dept. of Energy

The Spallation Neutron Source — already the world’s most powerful accelerator-based neutron source — will be on a planned hiatus through June 2024 as crews work to upgrade the facility. Much of the work — part of the facility’s Proton Power Upgrade project — will involve building a connector between the accelerator and the planned Second Target Station.

Connecting  wires to the interface of the topological insulator and superconductor enables probing of novel electronic properties. Researchers aim for qubits based on theorized Majorana particles. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Quantum computers process information using quantum bits, or qubits, based on fragile, short-lived quantum mechanical states. To make qubits robust and tailor them for applications, researchers from the Department of Energy’s Oak Ridge National Laboratory sought to create a new material system.

Using the ultrahigh-vacuum atomic force microscope at DOE’s Center for Nanophase Materials Sciences at ORNL, researchers found unique environmentally induced ferroelectric phase transitions in hafnium zirconium oxide, a material important in developing advanced semiconductors. Credit: Arthur Baddorf/ORNL, Dept. of Energy

A team of scientists with ORNL has investigated the behavior of hafnium oxide, or hafnia, because of its potential for use in novel semiconductor applications.

Safari photo illustration

ORNL has launched a new entrepreneurial start-up program, Safari, as an addition to DOE's Office of Technology Transitions Practices to Accelerate the Commercialization of Technologies program. Safari seeks to connect post-exit entrepreneurs with commercially relevant technologies developed by world-leading scientific experts, which could provide the basis for a new business.