Skip to main content
Oak Ridge National Laboratory entrance sign

Measurement and data analysis techniques developed at the Department of Energy’s Oak Ridge National Laboratory could provide new insight into performance-robbing flaws in crystalline structures, ultimately improving the performance of solar cells.

Oak Ridge National Laboratory entrance sign

Experts at the U.S. Department of Energy’s Oak Ridge National Laboratory will help nine small companies move their innovative manufacturing, buildings, fuel cell, geothermal and vehicle technologies closer to the marketplace. The businesses are among 33 selected t...

Oak Ridge National Laboratory researchers re-evaluated used nuclear fuel rods from a commercial reactor and reduced data uncertainties by an order of magnitude compared with previous measurements taken at a different lab.

Nearly 100 commercial nuclear reactors supply one-fifth of America’s energy. For each fuel rod in a reactor assembly, only 5 percent of its energy is consumed before fission can no longer be sustained efficiently for power production and the fuel assembly must be replaced. Power plan...

ORNL’s Jim Keiser and Mike Stephens (on stepladder) prepare to install samples in a Keiser rig, a furnace for exposing materials to corrosive gases, crushing pressures and calamitous heat. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy;
The global marketplace demands constant improvements in performance and efficiency of aircraft engines, power turbines and other modern mainstays of energy technology. This progress requires advanced structural materials, such as ceramic composites and metal alloys with higher-t...
Default image of ORNL entry sign

A study led by the University of Tennessee and the Department of Energy’s Oak Ridge National Laboratory could soon pay dividends in the development of materials with energy-related applications. Three UT researchers—Maik Lang, assistant professor

Behind the work station, cryomodule 19 undergoes in-situ plasma processing inside the SNS linac. The inset shows a 6-cell cavity with monitored plasma inside each cell. Image credit: Genevieve Martin/ORNL.
A novel technique known as in-situ plasma processing is helping scientists get more neutrons and better data for their experiments at the Spallation Neutron Source at the Department of Energy’s Oak Ridge National Laboratory. “Plasma cleaning is a well-known technique in electrosta...
Knox County Commissioner and Oak Ridge National Laboratory Neutron Sciences Directorate employee Sam McKenzie talks to students from Knoxville’s Austin-East High School about career opportunities in science, technology, engineering and math during the
About 30 Austin-East High School students from Knoxville participated in the National “My Brother’s Keeper Day” at Oak Ridge National Laboratory. The goal of the White House initiative is designed to help boys and young men of color reach their full potential. ...
Default image of ORNL entry sign

Three U.S. Department of Energy-funded research centers – the BioEnergy Science Center (Oak Ridge National Laboratory), the Great Lakes Bioenergy Research Center (University of Wisconsin–Madison and Michigan State University), and the Joint BioEnergy Institute (Lawrence Berkeley National Laboratory) – are making progress on a shared mission to develop technologies that will bring advanced biofuels to the marketplace, reporting today the disclosure of their 500th invention.

Mutual rotation of two monolayers of a semiconducting material creates a variety of bilayer stacking patterns, depending on the twist angle. Fast and efficient characterization of these stacking patterns may aid exploration of potential applications
Stacking layers of nanometer-thin semiconducting materials at different angles is a new approach to designing the next generation of energy-efficient transistors and solar cells. The atoms in each layer are arranged in hexagonal arrays. When two layers are stacked a...
In pure water, lignin adopts a globular conformation (left) that aggregates on cellulose and blocks enzymes. In a THF-water cosolvent, lignin adopts coil conformations that are easier to remove during pretreatment. (ORNL image)
Breaking down cellulosic biomass for biofuel is a costly and complex process, requiring lots of acid, water, and heat. Experimental pretreatments, however, hold the promise of driving down these costs by making more biomass available to enzymes for fermentation. To gain a better...