Skip to main content
Academic researchers look to Argonne’s Mira supercomputer to better understand boiling phenomena, bubble formation and two-phase bubbly flow inside nuclear reactors. Credit: Igor Bolotnov/North Carolina State University

The intrinsic beauty of bubbles—those thin watery spheres filled with air or other gases—has long captured the imagination of children and adults alike. But bubbles are also a linchpin of nuclear engineering, helping to explain the natural world, predict safety issues and improve the...

Innovation Crossroads

Oak Ridge National Laboratory today welcomed a second group of technology innovators to join Innovation Crossroads, the Southeast’s only entrepreneurial research and development program based at a U.S. Department of Energy national laboratory. Selected through a me...

Default image of ORNL entry sign

James Peery, who led critical national security programs at Sandia National Laboratories and held multiple leadership positions at Los Alamos National Laboratory before arriving at the Department of Energy’s Oak Ridge National Laboratory last year, has been named a...

David J. Dean
David J. Dean has been named associate laboratory director for Physical Sciences at the Department of Energy's Oak Ridge National Laboratory, effective May 1. The Physical Sciences Directorate encompasses the laboratory's materials science and technology, chemic...
A tetradentate ligand selects americium (Am, depicted by green spheres) over europium (Eu, blue spheres). Red indicates oxygen atoms and purple, nitrogen atoms that are the key to the ligand’s selectivity. Image credit: Oak Ridge National Laboratory, U.S.
After used nuclear fuel is removed from a reactor, it emits heat for decades and remains radioactive for thousands of years. The used fuel is a mixture of major actinides (uranium, plutonium), fission products (mainly assorted metals, including lanthanides) and minor actinides (i.e....
Eugene Dumitrescu, Ben Lawrie, Matthew Feldman, and Jordan Hachtel (from left) have conducted investigations aimed at controlling the dissipative nature of quantum systems and materials. The cathodoluminescence microscope used in their work appears at rig
Scientists at the Department of Energy’s Oak Ridge National Laboratory are conducting fundamental physics research that will lead to more control over mercurial quantum systems and materials. Their studies will enable advancements in quantum computing, sensing, simulation, and mater...
Researchers work on the delicate wiring of a cryostat, which is like a thermos under vacuum that chills the detectors that are the heart of the MAJORANA DEMONSTRATOR. The experiment’s 2 cryostats each house 29 germanium detectors—diodes that are reverse b
If equal amounts of matter and antimatter had formed in the Big Bang more than 13 billion years ago, one would have annihilated the other upon meeting, and today’s universe would be full of energy but no matter to form stars, planets and life. Yet matter exists now. ...
Vincent Paquit

Leveraging his expertise in image processing, sensors, and machine learning, Vincent Paquit is devising a control system for additive manufacturing to produce 3D-printed parts that function as well as conventionally produced objects. Paquit’s research sits at the junction of manufacturing technol...

A newly discovered material called BiMn3Cr4O12, represented by the crystal structure, exhibits a rare combination of magnetic and electrical properties. The arrows illustrate the spin moments for the elements chromium (Cr) in yellow and manganese (Mn) in
Materials used in electronic devices are typically chosen because they possess either special magnetic or special electrical properties. However, an international team of researchers using neutron scattering recently identified a rare material that has both. In their paper publis...