Skip to main content
Nils Stenvig is modeling the nation’s bulk electric system for DOE’s North American Energy Resilience Model to better understand and predict the grid’s behavior.

Nils Stenvig has always had an interest in solving big problems. That desire drove his focus on electrical engineering in college and eventually led him to Oak Ridge National Laboratory, where today he’s using his expertise to better understand the world’s largest machine—the electrical grid.

To understand the electronic structures of solids and predict their properties, ORNL’s Valentino Cooper uses density functional theory (DFT), which models how many electrons are in a region rather than where those electrons are. “DFT essentially presents one electron existing in a ‘sea foam’ and tells how dense that foam is,” he said. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Valentino (“Tino”) Cooper of the Department of Energy’s Oak Ridge National Laboratory uses theory, modeling and computation to improve fundamental understanding of advanced materials for next-generation energy and information technologies.

Ben Betzler, a reactor physics nuclear engineer at Oak Ridge National Laboratory.

As a reactor physics nuclear engineer, Ben Betzler leverages and develops computational methods to solve questions across nuclear energy—whether it’s finding the best design of a reactor core or repurposing an old tool for a new analysis.

ORNL researchers developed sodium-ion batteries by pairing a high-energy oxide or phosphate cathode with a hard carbon anode and achieved 100 usage cycles at a one-hour charge and discharge rate. Credit: Mengya Li/Oak Ridge National Laboratory, U.S. Dept. of Energy

Researchers at ORNL demonstrated that sodium-ion batteries can serve as a low-cost, high performance substitute for rechargeable lithium-ion batteries commonly used in robotics, power tools, and grid-scale energy storage.

A new computational approach by ORNL can more quickly scan large-scale satellite images, such as these of Puerto Rico, for more accurate mapping of complex infrastructure like buildings. Credit: Maxar Technologies and Dalton Lunga/Oak Ridge National Laboratory, U.S. Dept. of Energy

A novel approach developed by scientists at ORNL can scan massive datasets of large-scale satellite images to more accurately map infrastructure – such as buildings and roads – in hours versus days. 

ORNL’s collaboration with Cincinati Children’s Hospital Medical Center will leverage the lab’s expertise in high-performance computing and safe, secure recordkeeping. Credit: Genevieve Martin/Oak Ridge National Laboratory, U.S. Dept. of Energy

Oak Ridge National Laboratory will partner with Cincinnati Children’s Hospital Medical Center to explore ways to deploy expertise in health data science that could more quickly identify patients’ mental health risk factors and aid in

This simulation of a fusion plasma calculation result shows the interaction of two counter-streaming beams of super-heated gas. Credit: David L. Green/Oak Ridge National Laboratory, U.S. Dept. of Energy

The prospect of simulating a fusion plasma is a step closer to reality thanks to a new computational tool developed by scientists in fusion physics, computer science and mathematics at ORNL.

Peter Wang

Peter Wang is focused on robotics and automation at the Department of Energy’s Manufacturing Demonstration Facility at ORNL, working on high-profile projects such as the MedUSA, a large-scale hybrid additive manufacturing machine.

Chris Ellis is applying his expertise in computational biology and microbiology to explore the human and soil microbiomes for clues to degenerative brain disease, as well as pathways to improved bioenergy crops.

After several years in the private sector exploring the unknown origins of neurodegenerative brain disorders such as Alzheimer’s, Chris Ellis thinks one of the keys to solving the mystery is at Oak Ridge National Laboratory: the world’s most powerful supercomputer.

Scanning probe microscopes use an atom-sharp tip—only a few nanometers thick—to image materials on a nanometer length scale. The probe tip, invisible to the eye, is attached to a cantilever (pictured) that moves across material surfaces like the tone arm on a record player. Credit: Genevieve Martin/Oak Ridge National Laboratory; U.S. Dept. of Energy.

Liam Collins was drawn to study physics to understand “hidden things” and honed his expertise in microscopy so that he could bring them to light.