Skip to main content
Default image of ORNL entry sign

Four Oak Ridge National Laboratory researchers specializing in environmental, biological and computational science are among 49 recipients of Department of Energy's Office of Science Early Career Research Program awards. The Early Career Research Program, now in its ...

ORNL researchers discovered that water in beryl displays some unique and unexpected characteristics. (Photo by Jeff Scovil)
Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states. In a paper published in Physical Review Letters, researchers at th...
Interpreting the results of collision induced dissociation (CID) experiments, simulations on Titan predict the formation of an unusually bonded uranium-nitrosyl molecule. Credit: J. Am. Chem. Society. DOI: 10.1021/jacs.5b02420
Radioactive materials have long been a part of American history—from the Manhattan Project to the development of nuclear power. The materials central to these innovations are actinides, or elements 89–103 on the periodic table that release large amounts of energy when atoms are spli...
Light drives the migration of charge carriers (electrons and holes) at the juncture between semiconductors with mismatched crystal lattices. These heterostructures hold promise for advancing optoelectronics and exploring new physics.

Epitaxy, or growing crystalline film layers that are templated by a crystalline substrate, is a mainstay of manufacturing transistors and semiconductors. If the material in one deposited layer is the same as the material in the next layer, it can be energetically fav...

Oak Ridge National Laboratory scientists combined imaging techniques to measure crystallization kinetics of perovskite films following exposure to a mixed halide vapor.

Researchers at the Department of Energy’s Oak Ridge National Laboratory have found a potential path to further improve solar cell efficiency by understanding the competition among halogen atoms during the synthesis of sunlight-absorbing crystals. 

In unbound calyx[4]pyrrole, two pyrrole “petals” are flipped up and two, down.

Atomic charges in chemical solutions are like Switzerland—they strive for neutrality. The tendency to balance charges drives dynamics when charged atoms or molecules, called ions, are present in solutions. Recently, researchers at the Department of Energy’s Oak Ridge National Laborat...

ORNL Image
Lipid molecules have split personalities—one part loves water, whereas the other avoids it at all costs. Lipids make up cell membranes, the frontline defense in preventing cellular access to bacterial and viral invaders. Many researchers believe that the membrane is not just a scaf...
Oak Ridge National Laboratory researchers made a molecule that could selectively bind to metals in the middle of the lanthanide series.

Rare earth elements are metals used in technologies from wind turbines and magnetic resonance imaging agents to industrial catalysts and high-definition televisions. Most are lanthanides, elements with atomic number from 57 to 71, lanthanum to lutetium, in the periodic table. The la...

ORNL’s tough new plastic is made with 50 percent renewable content from biomass. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; conceptual art by Mark Robbins
Your car’s bumper is probably made of a moldable thermoplastic polymer called ABS, shorthand for its acrylonitrile, butadiene and styrene components. Light, strong and tough, it is also the stuff of ventilation pipes, protective headgear, kitchen appliances, Lego bri...
Default image of ORNL entry sign
When lots of energy hits an atom, it can knock off electrons, making the atom extremely chemically reactive and initiating further destruction. That’s why radiation is so dangerous. It’s also why high-resolution imaging techniques that use energetic electron beams ...