Skip to main content
polarization image
Two-dimensional electronic devices could inch closer to their ultimate promise of low power, high efficiency and mechanical flexibility with a processing technique developed at the Department of Energy’s Oak Ridge National Laboratory.
Oak Ridge National Laboratory researchers re-evaluated used nuclear fuel rods from a commercial reactor and reduced data uncertainties by an order of magnitude compared with previous measurements taken at a different lab.

Nearly 100 commercial nuclear reactors supply one-fifth of America’s energy. For each fuel rod in a reactor assembly, only 5 percent of its energy is consumed before fission can no longer be sustained efficiently for power production and the fuel assembly must be replaced. Power plan...

ORNL’s Jim Keiser and Mike Stephens (on stepladder) prepare to install samples in a Keiser rig, a furnace for exposing materials to corrosive gases, crushing pressures and calamitous heat. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy;
The global marketplace demands constant improvements in performance and efficiency of aircraft engines, power turbines and other modern mainstays of energy technology. This progress requires advanced structural materials, such as ceramic composites and metal alloys with higher-t...
New HPC4Mfg projects pair manufacturers with resources at Oak Ridge, Lawrence Berkeley and Lawrence Livermore national laboratories. From left to right are Robin Miles, LLNL; Horst Simon, LBNL; Peter Nugent, LBNL; Trish Damkroger, LLNL; Dona Crawford, LLN

The Department of Energy’s Oak Ridge National Laboratory will support four new industry projects announced today as part of DOE’s High Performance Computing for Manufacturing (HPC4Mfg) Program. The program pairs selected companies with national labs, including ORNL...

Researchers used experimental data to create a 23.7-million atom biomass model featuring cellulose (purple), lignin (brown), and enzymes (green). (Image credit: Mike Matheson, ORNL)
Ask a biofuel researcher to name the single greatest technical barrier to cost-effective ethanol, and you’re likely to receive a one-word response: lignin. Cellulosic ethanol—fuel derived from woody plants and waste biomass—has the potential to become an affordable, renew...
In pure water, lignin adopts a globular conformation (left) that aggregates on cellulose and blocks enzymes. In a THF-water cosolvent, lignin adopts coil conformations (right) that are easier to remove during pretreatment.
When the Ford Motor Company’s first automobile, the Model T, debuted in 1908, it ran on a corn-derived biofuel called ethanol, a substance Henry Ford dubbed “the fuel of the future.”
Proton density after laser impact on a spherical solid density target: irradiated by an ultra-short, high intensity laser (not in picture) the intense electro-magnetic field rips electrons apart from their ions and creates a plasma.

Since lasers were first produced in the early 1960s, researchers have worked to apply laser technology from welding metal to surgeries, with laser technology advancing quickly through the last 50 years. Surgery, chemotherapy, and radiation therapy all play important roles...

Oak Ridge National Laboratory’s Joe Giaquinto investigates chemical clues for trace-level radioactivity. Giaquinto leads ORNL’s Nuclear Analytical Chemistry and Isotopics Laboratory, which makes critical contributions to nuclear forensics and nonprolifera

A group of nuclear detectives at the Department of Energy’s Oak Ridge National Laboratory takes on tough challenges, from detecting illicit uranium using isotopic “fingerprints” to investigating Presidential assassination conspiracies. 

In a Fluid Interface Reactions, Structures and Transport Center project to probe a battery’s atomic activity during its first charging cycle, Robert Sacci and colleagues used the Spallation Neutron Source’s vibrational spectrometer to gain chemical inform

Rechargeable batteries power everything from electric vehicles to wearable gadgets, but obstacles limit the creation of sleeker, longer-lasting and more efficient power sources. Batteries produce electricity when charged atoms, known as ions, move in a circuit from a positive end ...

ORNL’s Ralph Dinwiddie uses infrared cameras to create heat maps of working materials that reveal their thermal properties and subsurface structure. This 1998 image of an aging aircraft’s engine cowling revealed severe subsurface corrosion.
Scientists at the Department of Energy’s Oak Ridge National Laboratory are pioneering the use of infrared cameras to image additive manufacturing processes in hopes of better understanding how processing conditions affect the strength, residual stresses and microstructure of ...