Skip to main content
The artistic representation illustrates a measurement of a beam in a particle accelerator, demonstrating the beam’s structural complexity increases when measured in progressively higher dimensions.
The first full characterization measurement of an accelerator beam in six dimensions will advance the understanding and performance of current and planned accelerators around the world. A team of researchers led by the University of Tennessee, Knoxville conducted t...
As protons (pink) strike the target vessel and pass into the liquid mercury inside, the protons are absorbed, creating neutrons (blue) that are then sent through moderators and beam tubes to research instruments to study the fundamental properties of mate
The Spallation Neutron Source at the Department of Energy’s Oak Ridge National Laboratory has reached a new milestone by operating a complete neutron production run cycle at 1.3 megawatts. Achieving the record power level with a remarkable 94 percent accelerator bea...
Plants in the warmest of several study areas at the SPRUCE experimental site remained green and functional up to six weeks longer than plants growing at ambient temperatures. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

A futuristic experiment simulating warmer environmental conditions has shown that peatland vegetation responds to higher temperatures with an earlier and longer growth period.

Lauren Garrison

The materials inside a fusion reactor must withstand one of the most extreme environments in science, with temperatures in the thousands of degrees Celsius and a constant bombardment of neutron radiation and deuterium and tritium, isotopes of hydrogen, from the volatile plasma at th...

Singanallur “Venkat” Venkatakrishnan is a Wigner Fellow in the Imaging, Signals, and Machine Learning Group at ORNL.
Singanallur “Venkat” Venkatakrishnan is helping scientists get a better view of objects under study by some of Oak Ridge National Laboratory’s most powerful instruments by creating algorithms that turn data into 3D renderings with fewer images. The result is a better understanding o...
Ryan Kerekes is leader of the RF, Communications, and Cyber-Physical Security Group at Oak Ridge National Laboratory. Photos by Genevieve Martin, ORNL.

As leader of the RF, Communications, and Cyber-Physical Security Group at Oak Ridge National Laboratory, Kerekes heads an accelerated lab-directed research program to build virtual models of critical infrastructure systems like the power grid that can be used to develop ways to detect and repel cyber-intrusion and to make the network resilient when disruption occurs.

The sensors measure parameters like temperature, chemicals and electric grid elements for industrial and electrical applications. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Brixon, Inc., has exclusively licensed a multiparameter sensor technology from the Department of Energy’s Oak Ridge National Laboratory. The integrated platform uses various sensors that measure physical and environmental parameters and respond to standard security applications.

Yu collaborates on the MAJORANA DEMONSTRATOR, which set the stage for a future experiment to search for the signal of neutrinoless double-beta decay. Single beta-decay—in which a proton becomes a neutron and emits an antineutrino and a fast-moving electro

Chang-Hong Yu of the Department of Energy’s Oak Ridge National Laboratory fell in love with running in 2008 and has since completed 38 marathons or longer-distance races. Her passion for long-distance races serves her well chasing neutrinos—electrically neutral subatomic particles th...

ORNL Liane B. Russell Early Career Fellow Katie Schuman is studying how to put the theory of biologically inspired computing into practice.

If you try to visually represent a spiking neural network, a type of machine learning model, what you often get is an inextricable three-dimensional spiderweb of flashing dots and lines. This visual complexity masks a deeper dynamism, though, as the tangled mass is actually an ever-ch...

Micael Starke

When Michael Starke leaves the lab each day, he continues his work, in a sense, at home. The power systems engineer is developing methods to precisely control building electrical loads—and in his off hours, he has automated his own home with upwards of 90 smart devices to manage everything from heat...