Skip to main content
Marc Chattin of Oak Ridge National Laboratory uses an alpha spectrometer to analyze samples of isotopic plutonium with an ISO 17025-accredited method. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

The International Standards Organization has put its stamp of approval on 18 nuclear analytical chemistry methods at ORNL. These testing and calibration methods have received ISO 17025 accreditation.

ORNL researchers found that a battery anode film, made by Navitas Systems using a dry process, was strong and flexible. These characteristics make a lithium-ion battery safer and more durable. Credit: Navitas Systems

Early experiments at the Department of Energy’s Oak Ridge National Laboratory have revealed significant benefits to a dry battery manufacturing process. This eliminates the use of solvents and is more affordable, while showing promise for delivering a battery that is durable, less weighed down by inactive elements, and able to maintain a high capacity after use. 

Jacob McCulley

Jacob McCulley of the Department of Energy’s Oak Ridge National Laboratory has been named a senior member of the Institute of Electrical and Electronics Engineers, or  IEEE, one of the world’s largest technical professional 

Trillion Pixel Challenge attendees included interdisciplinary experts from image science, computer vision, high-performance computing, architecture, machine learning, advanced workflows, and end-user communities who came together to discuss geospatial AI challenges.

Experts across varied technology fields gathered ORNL to collaborate on the future of geospatial systems at the Trillion-Pixel GeoAI Challenge workshop. The third iteration of this event focused on multimodal advances in the field, including progress in artificial intelligence, cloud infrastructure, high-performance computing and remote sensing. These capabilities, when combined, can help solve problems in national and human security such as disaster response and land-use planning.

top view of cicada wing

Over the past decade, teams of engineers, chemists and biologists have analyzed the physical and chemical properties of cicada wings, hoping to unlock the secret of their ability to kill microbes on contact. If this function of nature can be replicated by science, it may lead to products with inherently antibacterial surfaces that are more effective than current chemical treatments.

This map illustrates the natural climate variability that affects the cold-season climate of the Central Southwest Asian region. Credit: Moetasim Ashfaq/ORNL

As extreme weather devastates communities worldwide, scientists are using modeling and simulation to understand how climate change impacts the frequency and intensity of these events. Although long-term climate projections and models are important, they are less helpful for short-term prediction of extreme weather that may rapidly displace thousands of people or require emergency aid.

This illustration shows how the TFIIH protein complex changes its structure to execute different functions. The TFIIH subunits are colored as follows: XPD red, p62 blue, p44 orange, p34 green, p52 purple, p8 light grey, XPB pink; MAT1 and XPA are shown in yellow, and DNA is cyan. Credit: Chunli Yan/Georgia State University

Transcription factor IIH is a veritable workhorse among the protein complexes that regulate human cell activity, playing critical roles both in synthesizing DNA and in enabling DNA repair. But how can one protein assembly participate in two such vastly different jobs? A team of researchers led by chemistry professor Ivaylo Ivanov of Georgia State University used the Summit supercomputer at ORNL to tackle that question.

Saubhagya Rathore uses his modeling, hydrology and engineering expertise to improve understanding of the nation’s watersheds to better predict the future climate and to guide resilience strategies. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Growing up exploring the parklands of India where Rudyard Kipling drew inspiration for The Jungle Book left Saubhagya Rathore with a deep respect and curiosity about the natural world. He later turned that interest into a career in environmental science and engineering, and today he is working at ORNL to improve our understanding of watersheds for better climate prediction and resilience.

The cosmic web shown in detail with other critical components of the simulations including dark matter, gas, temperature and neutral hydrogen density. The last panel shows the absorption features of the Lyman-alpha forest. Image credit: Bruno Villasenor/UCSC

A research team from the University of California, Santa Cruz, have used the Oak Ridge Leadership Computing Facility’s Summit supercomputer to run one of the most complete cosmological models yet to probe the properties of dark matter. 

JungHyun Bae portrait

JungHyun Bae is a nuclear scientist studying applications of particles that have some beneficial properties: They are everywhere, they are unlimited, they are safe.