Skip to main content
A researcher works in a lab in the Radiochemical Engineering and Development Center, or REDC,  at ORNL’s main campus. The REDC provides world-class capabilities in isotope production, research and development, source fabrication, and the distribution of various unique isotopes. Here, experts handle some of the most exotic materials in the world. Credit: Carlos Jones, ORNL/U.S. Dept. of Energy

A series of new classes at Pellissippi State Community College will offer students a new career path — and a national laboratory a pipeline of workers who have the skills needed for its own rapidly growing programs.

Artist’s conceptual drawing illustrates the novel energy filtering technique using neutrons that enabled researchers at ORNL to freeze moving germanium telluride atoms in an unblurred image. The images offered key insights into how the material produces its outstanding thermoelectric performance. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Scientists have long sought to better understand the “local structure” of materials, meaning the arrangement and activities of the neighboring particles around each atom. In crystals, which are used in electronics and many other applications, most of the atoms form highly ordered lattice patterns that repeat. But not all atoms conform to the pattern.

One of the proteins identified through a new ORNL-developed approach could be key to communications between poplar trees and beneficial microbes that can help boost poplar trees’ growth, carbon storage and climate resilience. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

ORNL researchers have identified specific proteins and amino acids that could control bioenergy plants’ ability to identify beneficial microbes that can enhance plant growth and storage of carbon in soils.

The next generation of the Center for Bioenergy Innovation will pursue an accelerated feedstock-to-fuels approach for the efficient, economic production of sustainable jet fuel. Credit: ORNL, U.S. Dept. of Energy

The Center for Bioenergy Innovation has been renewed by the Department of Energy as one of four bioenergy research centers across the nation to advance robust, economical production of plant-based fuels and chemicals.

ORNL’s Adam Guss began adapting the SAGE gene editing tool to modify microbes in graduate school. Today, SAGE is rapidly accelerating the design of custom microbes for a variety of applications. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A DNA editing tool adapted by Oak Ridge National Laboratory scientists makes engineering microbes for everything from bioenergy production to plastics recycling easier and faster.

Alice Perrin is a Distinguished Staff Fellow and materials scientist at Oak Ridge National Laboratory. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Alice Perrin is passionate about scientific research, but also beans — as in legumes.

Fungal geneticist Joanna Tannous is gaining a better understanding of the genetic processes behind fungal life to both combat plant disease and encourage beneficial processes like soil carbon storage. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Joanna Tannous has found the perfect organism to study to satisfy her deeply curious nature, her skills in biochemistry and genetics, and a drive to create solutions for a better world. The organism is a poorly understood life form that greatly influences its environment and is unique enough to deserve its own biological kingdom: fungi.

Heat is typically carried through a material by vibrations known as phonons. In some crystals, however, different atomic motions — known as phasons — carry heat three times faster and farther. This illustration shows phasons made by rearranging atoms, shown by arrows. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Warming a crystal of the mineral fresnoite, ORNL scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.

Even small movements of hydrogen, shown in yellow, were found to cause large energy shifts in the attached iron atoms, shown in silver, which could be of interest in creating novel chemical reactions. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Researchers from Yale University and ORNL collaborated on neutron scattering experiments to study hydrogen atom locations and their effects on iron in a compound similar to those commonly used in industrial catalysts.

ORNL Weinberg Fellow Addis Fuhr uses quantum chemistry and machine learning methods to advance new materials. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

When Addis Fuhr was growing up in Bakersfield, California, he enjoyed visiting the mall to gaze at crystals and rocks in the gem store.