Skip to main content
Background image represents the cobalt oxide structure Goodenough demonstrated could produce four volts of electricity with intercalated lithium ions. This early research led to energy storage and performance advances in myriad electronic applications. Credit: Jill Hemman/Oak Ridge National Laboratory, U.S. Dept. of Energy

Two of the researchers who share the Nobel Prize in Chemistry announced Wednesday—John B. Goodenough of the University of Texas at Austin and M. Stanley Whittingham of Binghamton University in New York—have research ties to ORNL.

Representatives from The University of Toledo and the U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL) in Tennessee are teaming up to conduct collaborative automotive materials research.” Credit: University of Toledo

ORNL and The University of Toledo have entered into a memorandum of understanding for collaborative research.

Snapshot of total temperature distribution at supersonic speed of mach 2.4. Total temperature allows the team to visualize the extent of the exhaust plumes as the temperature of the plumes is much greater than that of the surrounding atmosphere. Credit: NASA

The type of vehicle that will carry people to the Red Planet is shaping up to be “like a two-story house you’re trying to land on another planet. 

Buildings—Reaching the boiling point

Researchers at Oak Ridge National Laboratory demonstrated that metal foam enhances the evaporation process in thermal conversion systems and enables the development of compact HVAC&R units.

Tech transfer—Showcasing innovation

Researchers at Oak Ridge National Laboratory will present eight innovative technologies currently available for commercialization during a public event at ORNL on October 17.

Fusion—Heating the core

In a recent study, researchers at Oak Ridge National Laboratory performed experiments in a prototype fusion reactor materials testing facility to develop a method that uses microwaves to raise the plasma’s temperature closer to the extreme values

Neutrons—Insight into human tissue

Researchers used neutron scattering at Oak Ridge National Laboratory’s Spallation Neutron Source and High Flux Isotope Reactor to better understand how certain cells in human tissue bond together.

The configurational ensemble (a collection of 3D structures) of an intrinsically disordered protein, the N-terminal of c-Src kinase, which is a major signaling protein in humans. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy.

Using the Titan supercomputer and the Spallation Neutron Source at the Department of Energy’s Oak Ridge National Laboratory, scientists have created the most accurate 3D model yet of an intrinsically disordered protein, revealing the ensemble of its atomic-level structures.

Mircea Podar is leading a team of ORNL scientists as they devise a new way to isolate and grow uncultured microbes for laboratory study. Credit: Genevieve Martin/Oak Ridge National Laboratory, U.S. Dept. of Energy

Scientists at the U.S. Department of Energy’s Oak Ridge National Laboratory have demonstrated a way to isolate and grow targeted bacteria using genomic data, making strides toward resolving the grand challenge of uncultivated microbial “dark matter” in which the vast majority of microorganisms remain unstudied in the laboratory.

Gaute Hagen uses ORNL’s Summit supercomputer to model scientifically interesting atomic nuclei.

At the nexus of theory and computation, physicist Gaute Hagen of the Department of Energy’s Oak Ridge National Laboratory runs advanced models on powerful supercomputers to explore how protons and neutrons interact to “build” an atomic nucleus from