Skip to main content
Default image of ORNL entry sign
The next-generation Earth system model will simulate climate systems at unprecedented resolution over an unprecedented time scale in order to understand climate change, Earth system feedbacks and potential tipping points. The Accelerated Climate Model for Energy project, led...
Conceptual art connects the atomic underpinnings of the neutron-rich calcium-48 nucleus with the Crab Nebula, which has a neutron star at its heart. Zeros and ones depict the computational power needed to explore objects that differ in size by 18 orders o
An international team led by Gaute Hagen of the Department of Energy’s Oak Ridge National Laboratory used America’s most powerful supercomputer, Titan, to compute the neutron distribution and related observables of calcium-48
Default image of ORNL entry sign
High-resolution imaging of materials produces complex, copious data. Researchers at Oak Ridge National Laboratory are developing a visual analytics system that could essentially “look over a scientist’s shoulder,” learning from human actions and improving its predictions of ...
Default image of ORNL entry sign
The Department of Energy’s Oak Ridge National Laboratory hopes to add a second target station at its Spallation Neutron Source (SNS) in the next 10 years in order to enhance capabilities of in-depth studies of the molecular structure of materials. Ken Herwig of O...
Fullerenes appear as small silver spheres spread consistently throughout a network of small molecules, or polymers, in this schematic illustration of the morphology of a BHJ film with solvent additives. Credit: ORNL.
Advances in ultrathin films have made solar panels and semiconductor devices more efficient and less costly, and researchers at the Department of Energy’s Oak Ridge National Laboratory say they’ve found a way to manufacture the films more easily, too. Typically the films—used b...
An artist’s rendering of the five protein structures solved using neutrons shown on top of the MaNDi instrument detectors. Image credit - ORNL/DOE
Plants and other biomass can be converted into a variety of renewable high-value products including carbon fibers, plastics, and liquid fuels such as ethanol and biodiesel that are beneficial for reducing petroleum use and vehicle emissions. Breaking down plants in order to release...
Default image of ORNL entry sign
Steady progress in the development of advanced materials has led to modern civilization’s foundational technologies—better batteries, resilient building materials and atom-scale semiconductors. Development of the next wave of materials, however, is being slowed by the sheer co...
Default image of ORNL entry sign
Harvesting oil, mitigating subsurface contamination, and sequestering carbon emissions share a common thread—they deal with multiphase flows, or situations where materials are flowing close together in different states (solids, liquids, or gases) or when the flow is comprised ...
A surfactant template guides the self-assembly of functional polymer structures in an aqueous solution. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; image by Youngkyu Han and Renee Manning.
The efficiency of solar cells depends on precise engineering of polymers that assemble into films 1,000 times thinner than a human hair. Today, formation of that polymer assembly requires solvents that can harm the environment, but scientists at the Department of En...
With a nano-ring-based toroidal trap, cold polar molecules near the gray shaded surface approaching the central region may be trapped within a nanometer scale volume.
Single atoms or molecules imprisoned by laser light in a doughnut-shaped metal cage could unlock the key to advanced storage devices, computers and high-resolution instruments. In a paper published in Physical Review A, a team composed of Ali Passian of the Depa...