Skip to main content
In complex alloys, chemical disorder results from a greater variety of elements than found in traditional alloys. Traces here indicate electronic states in a complex alloy; smeared traces reduced electrical and thermal conductivity. Image credit: Oak Ridg
Designing alloys to withstand extreme environments is a fundamental challenge for materials scientists. Energy from radiation can create imperfections in alloys, so researchers in an Energy Frontier Research Center led by the Department of Energy’s Oak Ridge National ...
An ORNL technology that converts waste rubber into a valuable energy storage material has been licensed to RJ Lee Group. ORNL inventors Amit Naskar (left) and Parans Paranthaman flank Richard Lee, CEO of RJ Lee Group.
RJ Lee Group has signed an agreement to license an invention developed at the Department of Energy’s Oak Ridge National Laboratory that converts waste rubber into a valuable energy storage material. The technology turns rubber sources such as tires into carbon blac...
Oak Ridge National Laboratory
Award-winning author Richard Rhodes, who wrote the book “The Making of the Atomic Bomb,” told an Oak Ridge audience that despite new forms of clean energy being developed, coal is still the world’s primary producer of energy, listing several reasons. “In a world...
Redistribution of electronic clouds causes a lattice instability and freezes the flow of heat in highly efficient tin selenide. The crystal lattice adopts a distorted state in which the chemical bonds are stretched into an accordion-like configuration, an

Engines, laptops and power plants generate waste heat. Thermoelectric materials, which convert temperature gradients to electricity and vice versa, can recover some of that heat and improve energy efficiency. A team of scientists at the Department of Energy’s Oak Ridg...

Default image of ORNL entry sign

Quasiparticles—excitations that behave collectively like particles—are central to energy applications but can be difficult to detect. Recently, however, researchers have seen evidence of quasiparticles called negative trions forming and fading in a layer of semiconducting mate...

Default image of ORNL entry sign
Steady progress in the development of advanced materials has led to modern civilization’s foundational technologies—better batteries, resilient building materials and atom-scale semiconductors. Development of the next wave of materials, however, is being slowed by the sheer co...
Default image of ORNL entry sign
Oak Ridge National Laboratory is marking the 50th anniversary of the startup of its Molten Salt Reactor Experiment this month. A workshop on molten salt reactor technologies Oct. 15-16 at ORNL will bring together government representatives, U.S. and international researchers, ...
A surfactant template guides the self-assembly of functional polymer structures in an aqueous solution. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; image by Youngkyu Han and Renee Manning.
The efficiency of solar cells depends on precise engineering of polymers that assemble into films 1,000 times thinner than a human hair. Today, formation of that polymer assembly requires solvents that can harm the environment, but scientists at the Department of En...
An ORNL-University of Rome study has delivered direct evidence of high-temperature superconductivity at the interface of two insulating oxide materials. Electron microscopy at ORNL showed that superconductivity arises from oxygen ions (circled in white) t
Electron microscopy at the Department of Energy’s Oak Ridge National Laboratory is pointing researchers closer to the development of ultra-thin materials that transfer electrons with no resistance at relatively high temperatures. The study delivers direct evidence of high-tem...
Default image of ORNL entry sign
Some of the 300 million tires discarded each year in the United States alone could be used in supercapacitors for vehicles and the electric grid using a technology developed at the Department of Energy’s Oak Ridge National Laboratory and Drexel University. By em...