Skip to main content
The Weyl semimetal state is induced when the opposing motions of the electrons cause the Dirac cones to split in two (illustrated on the left by outward facing electrons, opposite the inward facing electrons on the right).
The observation of an abnormal state of matter in a two-dimensional magnetic material is the latest development in the race to harness novel electronic properties for more robust and efficient next-generation devices. Neutron scattering at the Department of Energy’s Oak Ridge ...
ORNL researchers Todd Toops, Charles Finney, and Melanie DeBusk (left to right) hold an example of a particulate filter used to collect harmful emissions in vehicles.

Researchers are looking to neutrons for new ways to save fuel during the operation of filters that clean the soot, or carbon and ash-based particulate matter, emitted by vehicles. A team of researchers from the Energy and Transportation Science Division at the Department of En...

The hCA II active site is flanked by hydrophilic (violet) and hydrophobic (green) binding pockets that can be used to design specific drugs targeting cancer-associated hCAs. Five clinical drugs are shown superimposed in the hCA II active site
New insights from neutron analysis of glaucoma drugs and their enzyme target may help scientists design drugs that more effectively target aggressive cancers. A team of researchers led by the Department of Energy’s Oak Ridge National Laboratory used neutro...
ORNL and EPRI built an enclosed welding system in a hot cell of ORNL’s Radiochemical Engineering Development Center. C. Scott White (ORNL) performs operations with remotely controlled manipulators and cameras.

Scientists of the Department of Energy’s Light Water Reactor Sustainability Program (LWRS) and partners from the Electric Power Research Institute (EPRI) have conducted the first weld tests to repair highly irradiated materials at DOE’s Oak Ridge National Laboratory.

Fossil_energy_ORNL3.jpg
To improve models for drilling, hydraulic fracturing and underground storage of carbon dioxide, Oak Ridge National Laboratory scientists used neutrons to understand how water flows through fractured rock.
Neutrons-Exotic_particles.jpg
A novel approach for studying magnetic behavior in a material called alpha-ruthenium trichloride may have implications for quantum computing. By suppressing the material’s magnetic order, scientists from Oak Ridge National Laboratory and the University of Tennessee observed be...
Brenda Pracheil and Bryan Chakoumakos examine the structure of an otolith under a microscope.
Scientific discovery can come from anywhere, but few researchers can say the answers to their questions would come from the pea-sized bones in the head of a six-foot-long, 200-pound prehistoric freshwater fish. In a unique pairing of biology and neutron science, researchers from...
Tennessine thumbnail
The recently discovered element 117 has been officially named "tennessine" in recognition of Tennessee’s contributions to its discovery, including the efforts of the Department of Energy's Oak Ridge National Laboratory and its Tennessee collaborators at Vanderbilt University and the University of Tennessee.
Pressure Synthesis
Unexpected results from a neutron scattering experiment at the Department of Energy’s Oak Ridge National Laboratory could open a new pathway for the synthesis of novel materials and also help explain the formation of complex organic structures observed in interstellar space. I...
A team from ORNL, Indiana University and Max Planck Institute in Germany has implemented a technique with Wollaston prisms to expand the capabilities currently available at ORNL’s High Flux Isotope Reactor instrument HB-1.
For the first time since 2011, scientific users of Oak Ridge National Laboratory’s High Flux Isotope Reactor were able to take advantage of a seventh cycle, allowing for 25 extra days of neutron production and available time for new experiments on HFIR’s 12 beam lines in fiscal ye...