Skip to main content
Hood Whitson, chief executive officer of Element3, and Cynthia Jenks, associate laboratory director for the Physical Sciences Directorate, shake hands during the Element3 licensing event at ORNL on May 3, 2024. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A collection of seven technologies for lithium recovery developed by scientists from ORNL has been licensed to Element3, a Texas-based company focused on extracting lithium from wastewater produced by oil and gas production. 

Caption: Jaswinder Sharma makes battery coin cells with a lightweight current collector made of thin layers of aligned carbon fibers in a polymer with carbon nanotubes. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Electric vehicles can drive longer distances if their lithium-ion batteries deliver more energy in a lighter package. A prime weight-loss candidate is the current collector, a component that often adds 10% to the weight of a battery cell without contributing energy.

Tennessine thumbnail
The recently discovered element 117 has been officially named "tennessine" in recognition of Tennessee’s contributions to its discovery, including the efforts of the Department of Energy's Oak Ridge National Laboratory and its Tennessee collaborators at Vanderbilt University and the University of Tennessee.
Rubber-lignin samples
Scientists have developed a process for mixing unmodified lignin with general-purpose rubber and other components that yields high-performance renewable thermoplastics containing up to 41 percent of lignin content. The Oak Ridge National Laboratory-led research team tested two combinations of materials using different lignin varieties resulting in samples that were either “stretchy” or demonstrated tensile strength comparable to glassy plastic such as acrylonitrile butadiene styrene, or ABS.
This isotropic, neodymium-iron-boron bonded permanent magnet was 3D-printed at DOE’s Manufacturing Demonstration Facility at Oak Ridge National Laboratory.

Researchers at the Department of Energy’s Oak Ridge National Laboratory have demonstrated that permanent magnets produced by additive manufacturing can outperform bonded magnets made using traditional techniques while conserving critical materials. Scientists fabric...

carbon nanospikes
In a new twist to waste-to-fuel technology, scientists at the Department of Energy’s Oak Ridge National Laboratory have developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol. Their findin...
A simulation shows the path for the collision of a krypton ion (blue) with a defected graphene sheet and subsequent formation of a carbon vacancy (red). Red shades indicate local strain in the graphene. Image credit: Kichul Yoon, Penn State
Researchers at Penn State, the Department of Energy’s Oak Ridge National Laboratory and Lockheed Martin Space Systems Company have developed methods to control defects in two-dimensional materials, such as graphene, that may lead to improved membranes for water desalination, energy...
ORNL researcher Xiaobing Liu  works in the laboratory’s Building Technologies Research and Integration Center.

As a boy growing up in China, Xiaobing Liu knew all about Oak Ridge and the World War II Manhattan Project. He had no idea that he would one day work at DOE’s Oak Ridge National Laboratory, the Secret City’s successor. Liu is a lead researcher in geothermal heat pump (GHP) techn...

Natl-Hydropower-Map-2016-phres3_crop.png
Oak Ridge National Laboratory researchers have produced the next generation of the National Hydropower Map – a visualization tool that provides updated statistics on overall capacity and performance on the nation’s hydropower fleet. The map is part of the lab’s National Hydropower ...
Superhydrophobic water droplets
Samsung Electronics has exclusively licensed optically clear superhydrophobic film technology from the Department of Energy’s Oak Ridge National Laboratory to improve the performance of glass displays on smartphones, tablets and other electronic devices. O...