Skip to main content
This image shows an artist’s depiction of the team’s QCD multigrid method.
Scientists are only beginning to understand the laws that govern the atomic world. Before the 1950s the electrons, neutrons, and protons comprising atoms were the smallest confirmed units of matter.
Volume rendering from a 3D core-collapse supernova simulation showing the development of strong turbulent convection driven by neutrino heating. This simulation is part of a series of high-resolution 3D simulations from this project using state-of-the-art

The U.S. Department of Energy’s Office of Science announced 55 projects with high potential for accelerating discovery through its Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. These awards allocate the multi-petascale computing resources at Argonne and Oak Ridge National Laboratories, two of America’s most powerful supercomputers dedicated to open science.

tourassi_image
Despite steady progress in detection and treatment in recent decades, cancer remains the second leading cause of death in the United States, cutting short the lives of approximately 500,000 people each year. To better understand and combat this disease, medical researcher...
An illustration that demonstrates how THF (orange) and water (blue) phase separate on the surface of cellulose (green), thus facilitating its breakdown. Image credit: Barmak Mostofian
Lignocellulosic biomass—plant matter such as cornstalks, straw, and woody plants—is a sustainable source for production of bio-based fuels and chemicals.
ORNL will lend computational resources such as its Titan supercomputer to support the Cancer Moonshot effort.

The Department of Energy’s Oak Ridge National Laboratory will add its computational know-how to the battle against cancer through several new projects recently announced at the White House Cancer Moonshot Summit. 

OLCF Vimeo Screenshot

While trying to fatten the atom in 1938, German chemist Otto Hahn accidentally split it instead. This surprising discovery put modern science on the fast track to the atomic age and to the realization of technologies with profound potential for great harm or great help. Altho...

The image above shows the chain of the studied calcium isotopes. The “doubly magic” isotopes with mass numbers 40 (Ca-40) and 48 (Ca-48) exhibit equal charge radii. The first measurement of the charge radius in Ca-52 yielded an unexpectedly large result.

For decades nuclear physicists have tried to learn more about which elements, or their various isotopes, are “magic.” This is not to say that they display supernatural powers. Magic atomic nuclei are composed of “magic” numbers of protons and neutrons—collectively called nucleons—such as 2, 8, 20, and 28.

In conventional, low-temperature superconductivity (left), so-called Cooper pairing arises from the presence of an electron Fermi sea. In the pseudogap regime of the cuprate superconductors (right), parts of the Fermi sea are “dried out” and the charge-ca
When physicists Georg Bednorz and K. Alex Muller discovered the first high-temperature superconductors in 1986, it didn’t take much imagination to envision the potential technological benefits of harnessing such materials.
Fernanda Foertter
Fernanda Foertter, a user support specialist at the Department of Energy’s Oak Ridge National Laboratory, considers herself a tinkerer. Foertter’s tinkering started when she was a child, but her innate inquisitiveness still influences her work at the Oak Ridge Leadership Computing...
An illustration of the dopamine transporter in its outward- (left) and inward-opening (right) state. Note that the inward opening has brought about an outward closing and change in the number of water molecules (blue, pink spheres) inside and outside the

In an era of instant communication, perhaps no message-passing system is more underappreciated than the human body. Underlying each movement, each mood, each sight, sound, or smell, an army of specialized cells called neurons relays signals that register in the brain and connect us to our environment.