Skip to main content
Department of Energy national lab researchers found strain dramatically influences low-temperature oxygen electrocatalysis on perovskite oxides, enhancing bifunctional activity essential for fuel cells and metal–air batteries.

Catalysts make chemical reactions more likely to occur. In most cases, a catalyst that’s good at driving chemical reactions in one direction is bad at driving reactions in the opposite direction. However, a research team led by the Department of Energy’s Oak Ridge National Laboratory ...

OAK RIDGE, Tenn., May 24, 2016 -- Oak Ridge National Laboratory has been selected for funding negotiations for  a competitive award from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) that aims to develop a low-cost, mul

Oak Ridge National Laboratory has been selected for funding negotiations for a competitive award from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) that aims to develop a low-cost, multilayer, highly transparent and thermally insulating film for window applications.

A 3D structure of the HIV-1 protease in cartoon representation with bound clinical drug darunavir (shown as sticks).
A team led by the Department of Energy’s Oak Ridge National Laboratory used neutron analysis to better understand a protein implicated in the replication of HIV, the retrovirus that causes AIDS. The enzyme, known as HIV-1 protease, is a key drug target for HIV and AIDS therapies. &nbs...
ORNL carbon fiber processing technology co-invented by Felix Paulauskas (left) has been licensed to RMX Technologies, represented by vice president for research and development Truman Bonds.

RMX Technologies of Knoxville, Tenn., and the Department of Energy’s Oak Ridge National Laboratory have signed an exclusive licensing agreement for a new technology that dramatically reduces the time and energy needed in the production of carbon fiber. Lowering the ...

An ORNL-led research team found the key to fast ion conduction in a solid electrolyte. Tiny features maximize ion transport pathways, represented by red and green. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

In a rechargeable battery, the electrolyte transports lithium ions from the negative to the positive electrode during discharging. The path of ionic flow reverses during recharging. The organic liquid electrolytes in commercial lithium-ion batteries are flammable and su...

The GLIDES approach has the potential to change the way energy is stored.

The gap between electricity generation and use could be narrowed with an Oak Ridge National Laboratory system that extracts energy from thin air. Actually, Ground-Level Integrated Diverse Energy Storage, or GLIDES, stores electricity mechanically in the form of compressed gas that disp...

Discarded tires can provide material useful for lower-cost sodium-ion batteries for energy storage.
Hard carbon materials recycled from tires continue to show great promise as anodes in sodium-ion batteries for large-scale energy storage, according to an Oak Ridge National Laboratory study led by Yunchao Li. The carbons, captured by pyrolyzing, or baking in the absence of oxygen, tir...
A 3D-printed thermoplastic mold manufactured at ORNL withstood testing in an industrial autoclave.

A successful test of 3D-printed thermoplastic molds demonstrates the potential of additive manufacturing in the tooling industry. Researchers at Oak Ridge National Laboratory’s Manufacturing Demonstration Facility collaborated with a team of industry partners to 3D-print and machine se...

Default image of ORNL entry sign

Four Oak Ridge National Laboratory researchers specializing in environmental, biological and computational science are among 49 recipients of Department of Energy's Office of Science Early Career Research Program awards. The Early Career Research Program, now in its ...

ORNL researchers discovered that water in beryl displays some unique and unexpected characteristics. (Photo by Jeff Scovil)
Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states. In a paper published in Physical Review Letters, researchers at th...