Skip to main content
Amit_Naskar_2

Finding new energy uses for underrated materials is a recurring theme across Amit Naskar’s research portfolio. Since joining Oak Ridge National Laboratory in 2006, he has studied low-cost polymers as carbon fiber precursors, turning lignin−a byproduct of biofuel production−into renewable thermoplastics and creating carbon battery electrodes from recycled tires.

Left to right: ORNL’s Derek Rose, Matthew Eicholtz, Philip Bingham, Ryan Kerekes, Shaun Gleason
In the quest to better understand and cure childhood diseases, scientists at St. Jude Children’s Research Hospital accumulate enormous amounts of data from powerful video microscopes. To help St. Jude scientists mine that trove of data, researchers at Oak Ridge National Laboratory hav...
VA_healthcare_dataset
Oak Ridge National Laboratory has partnered with the Department of Veterans Affairs to develop methods and algorithms to mine the VA’s health data more efficiently. The resulting novel, secure platform promises to improve the health and wellbeing of millions of veterans through better understanding of underlying causes of diseases and conditions, hereditary factors and health history.
ORNL_iESM_model

A new integrated computational model reduces uncertainty in climate predictions by bridging Earth systems with energy and economic models and large-scale human impact data. Co-developed by Oak Ridge National Laboratory, the novel integrated Earth system model, or iESM, leverages the power of supercomputers, including ORNL’s Titan, to couple biospheric feedbacks from oceans, atmosphere and land with human activity, such as fossil fuel emissions, agriculture and land use.

Ben Doughty
No two scientists have the same story about how they ended up in their field. Some people seem to have been born scientists; others develop their love for it as budding minds full of curiosity. Then there are those who don’t discover science until later in life, but when they do, the...
ORNL welcomed its first group of research fellows to join Innovation Crossroads, an entrepreneurial research and development program based at the lab.

Oak Ridge National Laboratory today welcomed the first cohort of innovators to join Innovation Crossroads, the Southeast region's first entrepreneurial research and development program based at a U.S. Department of Energy national laboratory. Innovation Crossroads, ...

ORNL-Lenvio_tech_license_signing_ceremony2

Virginia-based Lenvio Inc. has exclusively licensed a cyber security technology from the Department of Energy’s Oak Ridge National Laboratory that can quickly detect malicious behavior in software not previously identified as a threat.

Computing_Quantum_deep

In a first for deep learning, an Oak Ridge National Laboratory-led team is bringing together quantum, high-performance and neuromorphic computing architectures to address complex issues that, if resolved, could clear the way for more flexible, efficient technologies in intelligent computing.

This graphene nanoribbon was made bottom-up from a molecular precursor. Nanoribbon width and edge effects influence electronic behavior. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy.
A new way to grow narrow ribbons of graphene, a lightweight and strong structure of single-atom-thick carbon atoms linked into hexagons, may address a shortcoming that has prevented the material from achieving its full potential in electronic applications. Graphene n...
ORNL’s Xiahan Sang unambiguously resolved the atomic structure of MXene, a 2D material promising for energy storage, catalysis and electronic conductivity. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; photographer Carlos Jones

Researchers have long sought electrically conductive materials for economical energy-storage devices. Two-dimensional (2D) ceramics called MXenes are contenders. Unlike most 2D ceramics, MXenes have inherently good conductivity because they are molecular sheets made from the carbides ...