Skip to main content
An Oak Ridge National Laboratory-led research team used a sophisticated X-ray scattering technique to visualize and quantify the movement of water molecules in space and time, which provides new insights that may open pathways for liquid-based electronics
A novel approach to studying the viscosity of water has revealed new insights about the behavior of water molecules and may open pathways for liquid-based electronics.
Fidget spinner
One drop of liquid, a cutting-edge laser 3D-printer and a few hours are all it takes to make a fidget spinner smaller than the width of a human hair. The tiny whirligig was created by researchers at Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences to illustrate the facility’s unique resources and expertise available to scientists across the world.
David Weston

David Weston became fascinated with plant genetics and ecology in college, and now with the support provided by the DOE Office of Science Early Career Research Program, he will link those fields as he studies plant-microbe symbiosis. The research will focus on sphagnum moss, a dominant plant of n...

Neutrons probed two mechanisms proposed to explain what happens when hydrogen gas flows over a cerium oxide (CeO2) catalyst that has been heated in an experimental chamber to different temperatures to change its oxidation state. The first mechanism sugges
Having the right tool for the job enabled scientists at the Department of Energy’s Oak Ridge National Laboratory and their collaborators to discover that a workhorse catalyst of vehicle exhaust systems—an “oxygen sponge” that can soak up oxygen from air and store it for later use in oxidation reactions—may also be a “hydrogen sponge.”
How perovskite catalysts are made and treated changes their surface compositions and ultimate product yields. If certain perovskite catalysts of the formula ABO3 are heat-treated, the catalyst’s surface terminates predominantly with A (a rare-earth metal

For some crystalline catalysts, what you see on the surface is not always what you get in the bulk, according to two studies led by the Department of Energy’s Oak Ridge National Laboratory. The investigators discovered that treating a complex 

Spin-polarized_4-probe_STM_ORNL_2.jpg
A new method that precisely measures the mysterious behavior and magnetic properties of electrons flowing across the surface of quantum materials could open a path to next-generation electronics. A team of scientists has developed an innovative microscopy technique to detect the spin of electrons in topological insulators, a new kind of quantum material that could be used in applications such as spintronics and quantum computing.
ORNL Image

Working backwards has moved Josh Michener’s research far forward as he uses evolution and genetics to engineer microbes for better conversion of plants into biofuels and biochemicals. In his work for the BioEnergy Science Center at ORNL, for instance, “we’ve gotten good at engineering microbes th...

Researchers at Rice University and Oak Ridge National Laboratory determined that two-dimensional materials grown onto a cone allow control over where defects called grain boundaries appear.

Rice University researchers have learned to manipulate two-dimensional materials to design in defects that enhance the materials’ properties. The Rice lab of theoretical physicist Boris Yakobson and colleagues at the Department of Energy’s Oak Ridge National Laboratory are combi...

ORNL Image

It’s been 10 years since the US Department of Energy first established a BioEnergy Science Center (BESC) at Oak Ridge National Laboratory (ORNL), and researcher Gerald “Jerry” Tuskan has used that time and the lab’s and center’s resources and tools

Used cooking oil can be converted into biofuel with carbon derived from recycled tires—a new method developed by an Oak Ridge National Laboratory-led research team.
Using a novel, reusable carbon material derived from old rubber tires, an Oak Ridge National Laboratory-led research team has developed a simple method to convert used cooking oil into biofuel.