Skip to main content
Two neutron diffraction experiments (represented by pink and blue neutron beams) probed a salty solution to reveal its atomic structure. The only difference between the experiments was the identity of the oxygen isotope (O*) that labeled nitrate molecules

Scientists at the Department of Energy’s Oak Ridge National Laboratory used neutrons, isotopes and simulations to “see” the atomic structure of a saturated solution and found evidence supporting one of two competing hypotheses about how ions come

Default image of ORNL entry sign
The Department of Energy’s Oak Ridge National Laboratory is the recipient of six awards from DOE’s Office of Science aimed at accelerating quantum information science (QIS), a burgeoning field of research increasingly seen as vital to scientific innovation and national...
In a thin film of a solar-energy material, molecules in twin domains (modeled in left and right panels) align in opposing orientations within grain boundaries (shown by scanning electron microscopy in the center panel).

A unique combination of imaging tools and atomic-level simulations has allowed a team led by the Department of Energy’s Oak Ridge National Laboratory to solve a longstanding debate about the properties of a promising material that can harvest energy from light. Th...

From left, Radu Custelcean and Neil Williams of Oak Ridge National Laboratory used a solar-powered oven to generate mild temperatures that liberate carbon dioxide trapped in guanidine carbonate crystals in an energy-sustainable way.

Chemists at the Department of Energy’s Oak Ridge National Laboratory have demonstrated a practical, energy-efficient method of capturing carbon dioxide (CO2) directly from air. They report their findings in Nature Energy. If deployed at large scale and coupled to geo...

After a monolayer MXene is heated, functional groups are removed from both surfaces. Titanium and carbon atoms migrate from one area to both surfaces, creating a pore and forming new structures. Credit: ORNL, USDOE; image by Xiahan Sang and Andy Sproles.

Scientists at the Department of Energy’s Oak Ridge National Laboratory induced a two-dimensional material to cannibalize itself for atomic “building blocks” from which stable structures formed. The findings, reported in Nature Communications, provide insights that ...

New research about the transfer of heat—fundamental to all materials—suggests that in thermal insulators, heat is conveyed by atomic vibrations and by random hopping of energy from atom to atom.
A discovery by scientists at the Department of Energy’s Oak Ridge National Laboratory supports a century-old theory by Albert Einstein that explains how heat moves through everything from travel mugs to engine parts.
Stealth Mark image 2.jpg

StealthCo, Inc., an Oak Ridge, Tenn.-based firm doing business as Stealth Mark, has exclusively licensed an invisible micro-taggant from the Department of Energy’s Oak Ridge National Laboratory. The anticounterfeiting technology features a novel materials coding system that uses an infrared marker for identification.

Default image of ORNL entry sign
Two Oak Ridge National Laboratory researchers specializing in neutron and chemical science are among 84 recipients of Department of Energy’s Office of Science Early Career Research Program awards. The Early Career Research Program, now in its ninth year, supports...
ORNL’s Tolga Aytug uses thermal processing and etching capabilities to produce a transparent superhydrophobic coating technology. The highly durable, thin coating technology was licensed by Carlex Glass America, aimed initially at advancing superhydrophob
Carlex Glass America LLC has exclusively licensed optically clear, superhydrophobic coating technology from the Department of Energy’s Oak Ridge National Laboratory aimed initially at advancing glass products for the automotive sector. ORNL’s development of a...
Radiochemical technicians David Denton and Karen Murphy use hot cell manipulators at Oak Ridge National Laboratory during the production of actinium-227.

The Department of Energy’s Oak Ridge National Laboratory is now producing actinium-227 (Ac-227) to meet projected demand for a highly effective cancer drug through a 10-year contract between the U.S. DOE Isotope Program and Bayer.