Skip to main content
Chemist Zili Wu makes discoveries about catalysts using a suite of sophisticated tools, such as this adsorption microcalorimeter to probe catalytic sites. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; photographer Carlos Jones

Zili Wu of the Department of Energy’s Oak Ridge National Laboratory grew up on a farm in China’s heartland. He chose to leave it to catalyze a career in chemistry. Today Wu leads ORNL’s Surface Chemistry and Catalysis group and conducts research at the Center for Nanophase Materials ...

Computing building blocks of soft materials may someday directly interface with the brain, according to researchers at Oak Ridge National Laboratory and the University of Tennessee. Credit: Joseph Najem, Oak Ridge National Laboratory/U.S. Dept. of Energy
A direct brain-to-computer interface may be on the horizon, thanks to synaptic mimics created by researchers at Oak Ridge National Laboratory and the University of Tennessee. Based on soft materials, the mimics are synthetic junctures that transmit electrical impulses like nerve cells...
Radiochemical technicians David Denton and Karen Murphy use hot cell manipulators at Oak Ridge National Laboratory during the production of actinium-227.

The Department of Energy’s Oak Ridge National Laboratory is now producing actinium-227 (Ac-227) to meet projected demand for a highly effective cancer drug through a 10-year contract between the U.S. DOE Isotope Program and Bayer.

Assembly of the PROSPECT neutrino detector. (Credit: PROSPECT collaboration / Mara Lavitt)
The Precision Reactor Oscillation and Spectrum Experiment (PROSPECT) has completed the installation of a novel antineutrino detector that will probe the possible existence of a new form of matter. PROSPECT, located at the High Flux Isotope Reactor (HFIR) at the Department of Energy...
Neutron scattering studies of lattice excitations in a fresnoite crystal revealed a way to speed thermal conduction. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; graphic artist Jill Hemman
Researchers at the Department of Energy’s Oak Ridge National Laboratory made the first observations of waves of atomic rearrangements, known as phasons, propagating supersonically through a vibrating crystal lattice—a discovery that may dramatically improve heat transp...
From left, ORNL’s Rick Lowden, Chris Bryan and Jim Kiggans were troubled that target discs of a material needed to produce Mo-99 using an accelerator could deform after irradiation and get stuck in their holder.

“Made in the USA.” That can now be said of the radioactive isotope molybdenum-99 (Mo-99), last made in the United States in the late 1980s. Its short-lived decay product, technetium-99m (Tc-99m), is the most widely used radioisotope in medical diagnostic imaging. Tc-99m is best known ...

Nanoscale spikes of carbon help catalyze a reaction that generates ammonia from nitrogen and water.
The search for a more energy efficient and environmentally friendly method of ammonia production for fertilizer has led to the discovery of a new type of catalytic reaction. Researchers at the Department of Energy’s Oak Ridge National Laboratory used nanoscale spike...
Illustration of satellite in front of glowing orange celestial body

A shield assembly that protects an instrument measuring ion and electron fluxes for a NASA mission to touch the Sun was tested in extreme experimental environments at Oak Ridge National Laboratory—and passed with flying colors. Components aboard Parker Solar Probe, which will endure th...

Neutron interactions revealed the orthorhombic structure of the hybrid perovskite stabilized by the strong hydrogen bonds between the nitrogen substituent of the methylammonium cations and the bromides on the corner-linked PbBr6 octahedra.
Neutron scattering has revealed, in real time, the fundamental mechanisms behind the conversion of sunlight into energy in hybrid perovskite materials. A better understanding of this behavior will enable manufacturers to design solar cells with increased efficiency...
A tetradentate ligand selects americium (Am, depicted by green spheres) over europium (Eu, blue spheres). Red indicates oxygen atoms and purple, nitrogen atoms that are the key to the ligand’s selectivity. Image credit: Oak Ridge National Laboratory, U.S.
After used nuclear fuel is removed from a reactor, it emits heat for decades and remains radioactive for thousands of years. The used fuel is a mixture of major actinides (uranium, plutonium), fission products (mainly assorted metals, including lanthanides) and minor actinides (i.e....