Skip to main content
Neutron interactions revealed the orthorhombic structure of the hybrid perovskite stabilized by the strong hydrogen bonds between the nitrogen substituent of the methylammonium cations and the bromides on the corner-linked PbBr6 octahedra.
Neutron scattering has revealed, in real time, the fundamental mechanisms behind the conversion of sunlight into energy in hybrid perovskite materials. A better understanding of this behavior will enable manufacturers to design solar cells with increased efficiency...
A tetradentate ligand selects americium (Am, depicted by green spheres) over europium (Eu, blue spheres). Red indicates oxygen atoms and purple, nitrogen atoms that are the key to the ligand’s selectivity. Image credit: Oak Ridge National Laboratory, U.S.
After used nuclear fuel is removed from a reactor, it emits heat for decades and remains radioactive for thousands of years. The used fuel is a mixture of major actinides (uranium, plutonium), fission products (mainly assorted metals, including lanthanides) and minor actinides (i.e....
From left, Andrew Lupini and Juan Carlos Idrobo use ORNL’s new monochromated, aberration-corrected scanning transmission electron microscope, a Nion HERMES to take the temperatures of materials at the nanoscale. Image credit: Oak Ridge National Laboratory

A scientific team led by the Department of Energy’s Oak Ridge National Laboratory has found a new way to take the local temperature of a material from an area about a billionth of a meter wide, or approximately 100,000 times thinner than a human hair. This discove...

ORNL_graphene_substrate

A new method to produce large, monolayer single-crystal-like graphene films more than a foot long relies on harnessing a “survival of the fittest” competition among crystals. The novel technique, developed by a team led by Oak Ridge National Laboratory, may open new opportunities for growing the high-quality two-dimensional materials necessary for long-awaited practical applications.

Oak Ridge National Laboratory researcher Halil Tekinalp combines silanes and polylactic acid to create supertough renewable plastic.

A novel method developed at Oak Ridge National Laboratory creates supertough renewable plastic with improved manufacturability. Working with polylactic acid, a biobased plastic often used in packaging, textiles, biomedical implants and 3D printing, the research team added tiny amo...

Fossil_energy_ORNL3.jpg
To improve models for drilling, hydraulic fracturing and underground storage of carbon dioxide, Oak Ridge National Laboratory scientists used neutrons to understand how water flows through fractured rock.
shape-memory conductors

A novel approach that creates a renewable, leathery material—programmed to remember its shape—may offer a low-cost alternative to conventional conductors for applications in sensors and robotics. To make the bio-based, shape-memory material, Oak Ridge National Laboratory scientists streamlined a solvent-free process that mixes rubber with lignin—the by-product of woody plants used to make biofuels.

Neutrons-Exotic_particles.jpg
A novel approach for studying magnetic behavior in a material called alpha-ruthenium trichloride may have implications for quantum computing. By suppressing the material’s magnetic order, scientists from Oak Ridge National Laboratory and the University of Tennessee observed be...