Skip to main content
A GRIDSMART traffic camera installed at an intersection in Leesburg, Virginia. Photo courtesy of GRIDSMART.

In a project leveraging computer vision, machine learning, and sensors, Oak Ridge National Laboratory scientists are working with private company GRIDSMART Technologies, Inc. to demonstrate how stop lights can be programmed to improve fuel economy and reduce emissions.

Jay Jay Billings and Alex McCaskey observe visualizations of ICE simulation data on ORNL’s Exploratory Visualization Environment for Research in Science and Technology facility. Credit: Jason Richards/ORNL
Since designing and launching a specialized workflow management system in 2010, a research team from the U.S. Department of Energy’s Oak Ridge National Laboratory has continuously updated the technology to help computational scientists develop software, visualize data and solve ...
SmartTruck, a small business in Greenville, SC, recently completed its first detailed unsteady analysis using modeling and simulation at the OLCF and became the first company to request certification from the EPA through CFD. Image Credit: SmartTruck

Long-haul tractor trailers, often referred to as “18-wheelers,” transport everything from household goods to supermarket foodstuffs across the United States every year. According to the Bureau of Transportation Statistics, these trucks moved more than 10 billion tons of goods—70.6 ...

Representatives from the US Air Force met with DOE and ORNL computing and global security team members on July 10 to kick off the collaboration.

For the US military, accurate weather prediction is vital to both the planning and execution of worldwide missions. To extend its weather modeling capabilities, the US Air Force has joined the computing experts at the US Department of Energy’s (DOE’s) Oak Ridge National Laborato...

A 3D visualization of the HZDR team’s final simulation of their expanded plastic target. The protons (blue) can be seen traveling along the laser axis from left to right (laser not shown). A particle bunch (red) of high-density protons can be seen at the
Along with surgery and chemotherapy, radiation therapy is one of the most widely accepted forms of cancer therapy today. Current radiation beams for cancer treatments employ photons (light particles), positively charged protons, or negatively charged electrons to target tumors in the body.
Lu Huang, USS industrial research engineer prepares a lightweighted advanced high strength steel component for neutron research at the Spallation Neutron Source’s VULCAN instrument.
The demand for lighter, stronger, and more durable materials for use in vehicles has never been higher. Companies are looking at new and advanced materials such as lightweight advanced high-strength steels (AHSS) to develop automotive components that help increase gas efficiency, red...
Assembly of the PROSPECT neutrino detector. (Credit: PROSPECT collaboration / Mara Lavitt)
The Precision Reactor Oscillation and Spectrum Experiment (PROSPECT) has completed the installation of a novel antineutrino detector that will probe the possible existence of a new form of matter. PROSPECT, located at the High Flux Isotope Reactor (HFIR) at the Department of Energy...
New exascale earth modeling system for energy
A new earth modeling system will use advanced computers and have weather scale resolution to simulate aspects of Earth’s variability and anticipate decadal changes that will critically impact the United States’ energy sector. The Energy Exascale Earth System Model, or E3SM, relea...
Uppsala University researcher Marvin Seibert is using neutrons to study RuBisCO, an abundant enzyme essential to life on earth.
Plants, algae, and other organisms produce the RuBisCO enzyme to convert carbon dioxide from the atmosphere into energy-rich molecules, like glucose, that form carbohydrates and other organic carbon compounds essential to life on earth. This catalytic process is called “carbon f...
Academic researchers look to Argonne’s Mira supercomputer to better understand boiling phenomena, bubble formation and two-phase bubbly flow inside nuclear reactors. Credit: Igor Bolotnov/North Carolina State University

The intrinsic beauty of bubbles—those thin watery spheres filled with air or other gases—has long captured the imagination of children and adults alike. But bubbles are also a linchpin of nuclear engineering, helping to explain the natural world, predict safety issues and improve the...