Skip to main content
Lu Huang, USS industrial research engineer prepares a lightweighted advanced high strength steel component for neutron research at the Spallation Neutron Source’s VULCAN instrument.
The demand for lighter, stronger, and more durable materials for use in vehicles has never been higher. Companies are looking at new and advanced materials such as lightweight advanced high-strength steels (AHSS) to develop automotive components that help increase gas efficiency, red...
Assembly of the PROSPECT neutrino detector. (Credit: PROSPECT collaboration / Mara Lavitt)
The Precision Reactor Oscillation and Spectrum Experiment (PROSPECT) has completed the installation of a novel antineutrino detector that will probe the possible existence of a new form of matter. PROSPECT, located at the High Flux Isotope Reactor (HFIR) at the Department of Energy...
Uppsala University researcher Marvin Seibert is using neutrons to study RuBisCO, an abundant enzyme essential to life on earth.
Plants, algae, and other organisms produce the RuBisCO enzyme to convert carbon dioxide from the atmosphere into energy-rich molecules, like glucose, that form carbohydrates and other organic carbon compounds essential to life on earth. This catalytic process is called “carbon f...
Academic researchers look to Argonne’s Mira supercomputer to better understand boiling phenomena, bubble formation and two-phase bubbly flow inside nuclear reactors. Credit: Igor Bolotnov/North Carolina State University

The intrinsic beauty of bubbles—those thin watery spheres filled with air or other gases—has long captured the imagination of children and adults alike. But bubbles are also a linchpin of nuclear engineering, helping to explain the natural world, predict safety issues and improve the...

Shown as green spheres, microcapsules containing the polymer manganoporphyrin, a newly developed antioxidant (green), the natural antioxidant tannic acid (yellow), and a binding material (blue), can be analyzed for stability and efficiency with neutrons.
Many natural and synthetic antioxidants help defend the body against oxidative stress—a biochemical imbalance that can damage cells and lead to illnesses such as diabetes, Alzheimer’s and cancer. However, these materials can become unstable and less effective over time. A new ...
Researcher Rob Schmidt and his team are using neutrons at HFIR’s CG-1D imaging instrument to study the development of dendrites with hope of improving the design of next-generation lithium ion batteries. Dendrites are thin microscopic fibers that can carr
Researchers are using neutrons to study a battery material that could offer a safer alternative to the flammable liquid component found in most types of lithium-ion batteries. Rob Schmidt, a postdoctoral researcher at the Department of Energy’s Oak Ridge National Laboratory, a...
The Weyl semimetal state is induced when the opposing motions of the electrons cause the Dirac cones to split in two (illustrated on the left by outward facing electrons, opposite the inward facing electrons on the right).
The observation of an abnormal state of matter in a two-dimensional magnetic material is the latest development in the race to harness novel electronic properties for more robust and efficient next-generation devices. Neutron scattering at the Department of Energy’s Oak Ridge ...
ORNL researchers Todd Toops, Charles Finney, and Melanie DeBusk (left to right) hold an example of a particulate filter used to collect harmful emissions in vehicles.

Researchers are looking to neutrons for new ways to save fuel during the operation of filters that clean the soot, or carbon and ash-based particulate matter, emitted by vehicles. A team of researchers from the Energy and Transportation Science Division at the Department of En...