Skip to main content
Gina Accawi, ORNL’s group leader for digital manufacturing and analyses framework, is making sure advanced manufacturing software and systems keep pace in a secure cyberspace and 5G world. Credit: ORNL/U.S. Dept. of Energy

As a computer engineer at Oak Ridge National Laboratory, Gina Accawi has long been the quiet and steady force behind some of the Department of Energy’s most widely used online tools and applications.

L-R: ORNL’s Omer Onar and Veda Galigekere with the dynamic wireless charging test bed at ORNL’s Grid Research Integration and Deployment Center. Credit: Carlos Jones, ORNL/U.S. Dept. of Energy

Consumer buy-in is key to the future of a decarbonized transportation sector in which electric vehicles largely replace today’s conventionally fueled cars and trucks.

Brenda Smith, shown here working with a gas viscometer in her research lab, is one of several people concurrently researching the thermophysical properties of feedstock gas. Their research will support computational researchers who are designing processes to separate isotopes. Credit: Carlos Jones/ORNL, US Dept. of Energy

For years Brenda Smith found fulfillment working with nuclear batteries, a topic she’s been researching as a chemist at Oak Ridge National Laboratory.

ORNL, in collaboration with Cincinnati, Inc., used the Big Area Additive Manufacturing machine to 3D print a mold made of recycled thermoplastic composite and syntactic foam, demonstrating the potential for multimaterials in large-scale applications. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers, in collaboration with Cincinnati Inc., demonstrated the potential for using multimaterials and recycled composites in large-scale applications by 3D printing a mold that replicated a single facet of a

Jianlin Li, leader of the Energy Storage and Conversion Manufacturing Group, directs the development of advanced manufacturing schemes and pilot-scale devices into emerging energy storage and conversion research. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

In his career focused on energy storage science, Jianlin Li has learned that discovering new ways to process and assemble batteries is just as important as the development of new materials.

Heavy-duty vehicles contribute 23% of transportation emissions of greenhouse gases and account for almost one-quarter of the fuel consumed annually in the U.S. Credit: Chris Bair/Unsplash

Through a consortium of Department of Energy national laboratories, ORNL scientists are applying their expertise to provide solutions that enable the commercialization of emission-free hydrogen fuel cell technology for heavy-duty

ORNL researchers used electron beam powder bed fusion to produce refractory metal molybdenum, which remained crack free and dense, proving its viability for additive manufacturing applications. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory scientists proved molybdenum titanium carbide, a refractory metal alloy that can withstand extreme temperature environments, can also be crack free and dense when produced with electron beam powder bed fusion. 

FAF5 diagram

A newly released dataset that tracks the movement of everything from food to gasoline across the United States by air, water, truck, rail and pipeline showed the value and tonnage of those goods rose significantly between 2012 and 2017.

Targeted alpha therapy can deliver radiation to specific cells, with minimal effect on surrounding, healthy cells. Credit: Michelle Lehman and Jaimee Janiga/ORNL, U.S. Dept. of Energy

A rare isotope in high demand for treating cancer is now more available to pharmaceutical companies developing and testing new drugs.

ORNL researchers used an electrochemical process to heal dendrites that formed in a ceramic, garnet-based catalyst designed for a solid-state lithium battery. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory successfully demonstrated a technique to heal dendrites that formed in a solid electrolyte, resolving an issue that can hamper the performance of high energy-density, solid-state batteries.