Skip to main content
Friederike Bock, a Eugene P. Wigner Fellow

Friederike Bock, a Eugene P. Wigner Fellow, wants everyone to know scientists aren’t just robots—they want to help others understand their research, and they have wide-ranging interests.

The students analyzed diatom images like this one to compare wild and genetically modified strains of these organisms. Credit: Alison Pawlicki/Oak Ridge National Laboratory, US Department of Energy.

Students often participate in internships and receive formal training in their chosen career fields during college, but some pursue professional development opportunities even earlier.

Nanofabricated “golden lollipop” helps researchers observe Fano interference using electron microscopy techniques at Oak Ridge National Laboratory.

Electrons in atoms are pretty talented. They can form chemical bonds, get kicked out of the atom and even “jump” to different locations based on their energetic states.

As part of DOE’s HPC4Mobility initiative ORNL researchers developed machine learning algorithms that can control smart traffic lights at intersections to facilitate the smooth flow of traffic and increase fuel efficiency.

A modern, healthy transportation system is vital to the nation’s economic security and the American standard of living. The U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL) is engaged in a broad portfolio of scientific research for improved mobility

Weiju Ren’s knowledgebase is making the nuclear world safer. Called DOE’s Gen IV Materials Handbook, it manages data about structural materials for the Very High Temperature Reactor. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Six new nuclear reactor technologies are set to deploy for commercial use between 2030 and 2040. Called Generation IV nuclear reactors, they will operate with improved performance at dramatically higher temperatures than today’s reactors.

Oak Ridge National Laboratory’s Ramesh Bhave co-invented a process to recover high-purity rare earth elements from scrapped magnets of computer hard drives (shown here) and other post-consumer wastes. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Rare earth elements are the “secret sauce” of numerous advanced materials for energy, transportation, defense and communications applications.

The core of a wind turbine blade by XZERES Corporation was produced at the MDF using Cincinnati Incorporated equipment for large-scale 3D printing with foam.

In the shifting landscape of global manufacturing, American ingenuity is once again giving U.S companies an edge with radical productivity improvements as a result of advanced materials and robotic systems developed at the Department of Energy’s Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory.

Organic chemist Santa Jansone-Popova designs new chemical architectures to support chemical separations that lay the groundwork for clean water and energy advances.

An organic chemist at Oak Ridge National Laboratory, Santa Jansone-Popova focuses on the fundamental challenges of chemical separations that translate to world-changing solutions for clean water and sustainable energy.

Combining fundamental chemistry with high-performance computing resources at ORNL, researchers demonstrate a more efficient method for recovering uranium from seawater, unveiling a prototype material that outperforms best-in-class uranium adsorbents. Credit: Alexander Ivanov/Oak Ridge National Laboratory, U.S. Dept. of Energy.

Scientists have demonstrated a new bio-inspired material for an eco-friendly and cost-effective approach to recovering uranium from seawater.

ORNL collaborator Hsiu-Wen Wang led the neutron scattering experiments at the Spallation Neutron Source to probe complex electrolyte solutions that challenge nuclear waste processing at Hanford and other sites. Credit: Genevieve Martin/Oak Ridge National Laboratory, U.S. Dept. of Energy.

Researchers at the Department of Energy’s Oak Ridge National Laboratory, Pacific Northwest National Laboratory and Washington State University teamed up to investigate the complex dynamics of low-water liquids that challenge nuclear waste processing at federal cleanup sites.