Skip to main content
Omar Demerdash

With the rise of the global pandemic, Omar Demerdash, a Liane B. Russell Distinguished Staff Fellow at ORNL since 2018, has become laser-focused on potential avenues to COVID-19 therapies.

Simulations forecast nationwide increase in human exposure to extreme climate events

OAK RIDGE, Tenn., May 5, 2020 — By 2050, the United States will likely be exposed to a larger number of extreme climate events, including more frequent heat waves, longer droughts and more intense floods, which can lead to greater risks for human health, ecosystem stability and regional economies.

Ecosystem Ecologist Verity Salmon captures and analyzes field data from sites in in Alaska and Minnesota to inform earth system models that are being used to predict environmental change.

While some of her earth system modeling colleagues at ORNL face challenges such as processor allocation or debugging code, Verity Salmon prepares for mosquito swarms and the possibility of grizzly bears.

UT-Battelle donates $10,000 to Second Harvest Food Bank

UT-Battelle, the managing contractor of Oak Ridge National Laboratory for the U.S. Department of Energy, has donated $10,000 to Second Harvest Food Bank of East Tennessee, providing 30,000 meals for those in need.

Coronavirus research

Researchers at the Department of Energy’s Oak Ridge National Laboratory have used Summit, the world’s most powerful and smartest supercomputer, to identify 77 small-molecule drug compounds that might warrant further study in the fight

Data scientists at Oak Ridge National Laboratory have completed a study of long-term trends in the relationship between the timing of tree leafing and rising temperatures in the United States. The information is being incorporated into DOE’s Energy Exascale Earth System Model. Photo Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

A team of scientists led by Oak Ridge National Laboratory found that while all regions of the country can expect an earlier start to the growing season as temperatures rise, the trend is likely to become more variable year-over-year in hotter regions.

Closely spaced hydrogen atoms could facilitate superconductivity in ambient conditions

An international team of researchers has discovered the hydrogen atoms in a metal hydride material are much more tightly spaced than had been predicted for decades — a feature that could possibly facilitate superconductivity at or near room temperature and pressure.

Gobet_Advincula Portrait

Rigoberto “Gobet” Advincula has been named Governor’s Chair of Advanced and Nanostructured Materials at Oak Ridge National Laboratory and the University of Tennessee.

Scanning probe microscopes use an atom-sharp tip—only a few nanometers thick—to image materials on a nanometer length scale. The probe tip, invisible to the eye, is attached to a cantilever (pictured) that moves across material surfaces like the tone arm on a record player. Credit: Genevieve Martin/Oak Ridge National Laboratory; U.S. Dept. of Energy.

Liam Collins was drawn to study physics to understand “hidden things” and honed his expertise in microscopy so that he could bring them to light.

Dalton Lunga

A typhoon strikes an island in the Pacific Ocean, downing power lines and cell towers. An earthquake hits a remote mountainous region, destroying structures and leaving no communication infrastructure behind.