Skip to main content
Catherine Schuman, top right, spoke to Copper Ridge Elementary School fifth graders about her job as an ORNL computer scientist as part of the lab’s STEM outreach during the COVID-19 pandemic. Credit: Abby Bower/Oak Ridge National Laboratory, U.S. Dept. of Energy

With Tennessee schools online for the rest of the school year, researchers at ORNL are making remote learning more engaging by “Zooming” into virtual classrooms to tell students about their science and their work at a national laboratory.

Simulations forecast nationwide increase in human exposure to extreme climate events

OAK RIDGE, Tenn., May 5, 2020 — By 2050, the United States will likely be exposed to a larger number of extreme climate events, including more frequent heat waves, longer droughts and more intense floods, which can lead to greater risks for human health, ecosystem stability and regional economies.

XACC enables the programming of quantum code alongside standard classical code and integrates quantum computers from a number of vendors. This animation illustrates how QPUs complete calculations and return results to the host CPU, a process that could drastically accelerate future scientific simulations. Credit: Michelle Lehman/Oak Ridge National Laboratory, U.S. Dept. of Energy

In the early 2000s, high-performance computing experts repurposed GPUs — common video game console components used to speed up image rendering and other time-consuming tasks 

Prospecting for deformations in exotic isotopes of ruthenium and molybdenum, Allmond found they displayed a deflated-football morphology. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

In the Physics Division of the Department of Energy’s Oak Ridge National Laboratory, James (“Mitch”) Allmond conducts experiments and uses theoretical models to advance our understanding of the structure of atomic nuclei, which are made of various combinations of protons and neutrons (nucleons).

Coronavirus graphic

In the race to identify solutions to the COVID-19 pandemic, researchers at the Department of Energy’s Oak Ridge National Laboratory are joining the fight by applying expertise in computational science, advanced manufacturing, data science and neutron science.

Materials — Molding molecular matter

Scientists at Oak Ridge National Laboratory used a focused beam of electrons to stitch platinum-silicon molecules into graphene, marking the first deliberate insertion of artificial molecules into a graphene host matrix.

Oak Ridge National Laboratory’s Ramesh Bhave co-invented a process to recover high-purity rare earth elements from scrapped magnets of computer hard drives (shown here) and other post-consumer wastes. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Three technologies and one commercialization program developed at the Department of Energy’s Oak Ridge National Laboratory have won National Technology Transfer Awards from the Federal Laboratory Consortium.

Joe Paddison a Eugene P. Wigner Fellow, studies how statistical sampling methods can be coupled with neutron scattering experiments of magnetic and other new materials to provide richer information. Image credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Department of Energy.

Joe Paddison, a Eugene P. Wigner Fellow at the Department of Energy’s Oak Ridge National Laboratory, believes there’s more information to be found in neutron scattering data than scientists like himself might expect.

Polymer self-assembly at the liquid-liquid interface in real time

OAK RIDGE, Tenn., Feb. 27, 2020 — Researchers at Oak Ridge National Laboratory and the University of Tennessee achieved a rare look at the inner workings of polymer self-assembly at an oil-water interface to advance materials for neuromorphic computing and bio-inspired technologies.

To understand the electronic structures of solids and predict their properties, ORNL’s Valentino Cooper uses density functional theory (DFT), which models how many electrons are in a region rather than where those electrons are. “DFT essentially presents one electron existing in a ‘sea foam’ and tells how dense that foam is,” he said. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Valentino (“Tino”) Cooper of the Department of Energy’s Oak Ridge National Laboratory uses theory, modeling and computation to improve fundamental understanding of advanced materials for next-generation energy and information technologies.