Skip to main content
Scientists genetically engineered bacteria for itaconic acid production, creating dynamic controls that separate microbial growth and production phases for increased efficiency and acid yield. Credit: NREL

A research team led by Oak Ridge National Laboratory bioengineered a microbe to efficiently turn waste into itaconic acid, an industrial chemical used in plastics and paints.

ORNL’s Sergei Kalinin and Rama Vasudevan (foreground) use scanning probe microscopy to study bulk ferroelectricity and surface electrochemistry -- and generate a lot of data. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

At the Department of Energy’s Oak Ridge National Laboratory, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.

ORNL ecosystem scientist Colleen Iversen talked to fourth-grade students at Coulter Grove Intermediate School in Maryville on Friday, April 23, as part of National Environmental Education Week.

Esther Parish is one of eight scientists from the Department of Energy's Oak Ridge National Laboratory talking to students in nine schools across East Tennessee as part of National Environmental Education Week, or EE Week.

Ken Andersen

From Denmark to Japan, the UK, France, and Sweden, physicist Ken Andersen has worked at neutron sources around the world. With significant contributions to neutron scattering and the scientific community, he’s now serving in his most important role yet.

Parans Paranthaman, a researcher in the Chemical Sciences Division at ORNL, coordinated research efforts to study the filter efficiency of the N95 material. His published results represent one of the first studies on polypropylene as it relates to COVID-19. Credit: ORNL/U.S. Dept. of Energy

When COVID-19 was declared a pandemic in March 2020, Oak Ridge National Laboratory’s Parans Paranthaman suddenly found himself working from home like millions of others.

Neutron scattering experiments show electric charges, shown in red, blue and grey, in the SARS-CoV-2 main protease site where telaprevir binds to the structure. The experiments provide critical data for the design of small-molecule drugs to treat COVID-19. Credit: Jill Hemman and Michelle Lehman/ORNL, U.S. Dept. of Energy

Scientists have found new, unexpected behaviors when SARS-CoV-2 – the virus that causes COVID-19 – encounters drugs known as inhibitors, which bind to certain components of the virus and block its ability to reproduce.  

Ken Andersen

Ken Andersen has been named associate laboratory director for the Neutron Sciences Directorate, or NScD, at the Department of Energy’s Oak Ridge National Laboratory.

The pressure cell uses two gem-quality synthetic opposing diamonds to exert extreme pressures on materials, providing fundamental insights into materials that only neutrons can reveal. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory’s Spallation Neutron Source have developed a diamond anvil pressure cell that will enable high-pressure science currently not possible at any other neutron source in the world.

ORNL researchers are developing a method to print low-cost, high-fidelity, customizable sensors for monitoring power grid equipment. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A method developed at Oak Ridge National Laboratory to print high-fidelity, passive sensors for energy applications can reduce the cost of monitoring critical power grid assets.

Martin Wissink of ORNL’s Buildings and Transportation Science Division applies neutrons and other diagnostic tools at Oak Ridge National Laboratory in pursuit of cleaner, sustainable and more flexible transportation technologies. Credit: Genevieve Martin/ORNL, U.S. Dept of Energy

For a researcher who started out in mechanical engineering with a focus on engine combustion, Martin Wissink has learned a lot about neutrons on the job