Skip to main content
Researchers from ORNL’s Vehicle and Autonomy Research Group created a control strategy for a hybrid electric bus that demonstrated up to 30% energy savings. Credit: University of California, Riverside

Oak Ridge National Laboratory researchers developed and demonstrated algorithm-based controls for a hybrid electric bus that yielded up to 30% energy savings compared with existing controls.

ORNL’s particle entanglement machine is a precursor to the device that researchers at the University of Oklahoma are building, which will produce entangled quantum particles for quantum sensing to detect underground pipeline leaks. Credit: ORNL, U.S. Dept. of Energy

To minimize potential damage from underground oil and gas leaks, Oak Ridge National Laboratory is co-developing a quantum sensing system to detect pipeline leaks more quickly.

An algorithm developed and field-tested by ORNL researchers uses machine learning to maintain homeowners’ preferred temperatures year-round while minimizing energy costs. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers designed and field-tested an algorithm that could help homeowners maintain comfortable temperatures year-round while minimizing utility costs.

ORNL researchers developed an innovative insulation system that uses sensors and controls to exchange heat or coolness between a building and its thermal energy storage system, which maximizes energy savings. Credit: Andrew Sproles and Michelle Lehman/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory have developed a novel envelope system that diverts heat or coolness away from a building and stores it for future use.

ORNL’s non-disruptive air leak detector captures air escaping from exterior walls and uses refractive imaging to calculate the leakage flow rate. Credit: ORNL, U.S. Dept. of Energy

A team of researchers at Oak Ridge National Laboratory has developed a method to detect and measure air leaking from a building’s walls and roof that is quicker, cheaper and less disruptive to occupants.

ORNL researchers used fiber reinforcements made of steel, glass and carbon to develop a concrete mix that demonstrated high early strength within six hours of production, which is needed for the precast concrete industry. Credit: ORNL/U.S. Dept. of Energy

A team of researchers at Oak Ridge National Laboratory and the University of Tennessee have developed a concrete mix that demonstrated high early strength within six hours of mixing, potentially doubling the production capacity for the precast industry.

Transition metals stitched into graphene with an electron beam form promising quantum building blocks. Credit: Ondrej Dyck, Andrew Lupini and Jacob Swett/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists demonstrated that an electron microscope can be used to selectively remove carbon atoms from graphene’s atomically thin lattice and stitch transition-metal dopant atoms in their place.

ORNL has modeled the spike protein that binds the novel coronavirus to a human cell for better understanding of the dynamics of COVID-19. Credit: Stephan Irle/ORNL, U.S. Dept. of Energy

To better understand the spread of SARS-CoV-2, the virus that causes COVID-19, Oak Ridge National Laboratory researchers have harnessed the power of supercomputers to accurately model the spike protein that binds the novel coronavirus to a human cell receptor.