Skip to main content
Field emission scanning electron microscopy reveals the microstructure of the porous activated carbon that can confine hydrogen at the nanoscale. Credit: Joaquin Silvestre-Albero

Neutron scattering techniques were used as part of a study of a novel nanoreactor material that grows crystalline hydrogen clathrates, or HCs, capable of storing hydrogen.

Oak Ridge National Laboratory scientists are enhancing the performance of polymer materials for next-generation lithium batteries. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory are using state-of-the-art methods to shed light on chemical separations needed to recover rare-earth elements and secure critical materials for clean energy technologies.

Virginia-based battery technology company, BTRY, has licensed several electrolyte and thin-film coating technologies, developed at Oak Ridge National Laboratory, to make batteries with increased energy density, at lower cost, and with an improved safety profile in crashes. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Several electrolyte and thin-film coating technologies, developed at Oak Ridge National Laboratory, have been licensed by BTRY, a battery technology company based in Virginia, to make batteries with increased energy density, at lower cost, and with an improved safety profile in crashes.

Neutron computed tomography reveals how water is constrained to travel only along certain strands of a special yarn coated with a water-wicking compound and a biocatalytic enzyme. Credit: Yuxuan Zhang/ORNL, U.S. Dept. of Energy

Textile engineering researchers from North Carolina State University used neutrons at Oak Ridge National Laboratory to identify a special wicking mechanism in a type of cotton yarn that allows the fibers to control the flow of liquid across certain strands.