Skip to main content
ORNL research scientist Christa Brelsford explained a mathematical framework she developed in 2018, which showed increased availability of infrastructure didn’t necessarily reduce inequality in its access. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Unequal access to modern infrastructure is a feature of growing cities, according to a study published this week in the Proceedings of the National Academy of Sciences

David McCollum is bringing his interdisciplinary expertise in engineering, economics and policy to several initiatives at Oak Ridge National Laboratory in the global effort to transform energy systems equitably while respecting planetary boundaries. Credit: Lindsay McCollum

David McCollum is using his interdisciplinary expertise, international networks and boundless enthusiasm to lead Oak Ridge National Laboratory’s contributions to the Net Zero World initiative.

Scientists with the Center for Bioenergy Innovation at ORNL highlighted a hybrid approach that uses microbes and catalysis to convert cellulosic biomass into fuels suitable for aviation and other difficult-to-electrify sectors. Credit: ORNL, U.S. Dept. of Energy

The rapid pace of global climate change has added urgency to developing technologies that reduce the carbon footprint of transportation technologies, especially in sectors that are difficult to electrify.

Dongarra in 2019 with Oak Ridge National Laboratory's Summit supercomputer

A force within the supercomputing community, Jack Dongarra developed software packages that became standard in the industry, allowing high-performance computers to become increasingly more powerful in recent decades.

ORNL biogeochemist Teri O’Meara is focused on improving how coastal systems are represented in global climate models, enabling better predictions about the future of these critical ecosystems. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Surrounded by the mountains of landlocked Tennessee, Oak Ridge National Laboratory’s Teri O’Meara is focused on understanding the future of the vitally important ecosystems lining the nation’s coasts.

An artist's rendering of the Ultium Cells battery cell production facility to be built in Spring Hill, Tennessee, which will employ 1,300 people. Recognizing the unique expertise of their organizations, ORNL, TVA, and the Tennessee Department of Economic and Community Development have been working together for several years to bring startups developing battery technologies for EVs and established automotive firms to Tennessee. Credit: Ultium Cells

ORNL, TVA and TNECD were recognized by the Federal Laboratory Consortium for their impactful partnership that resulted in a record $2.3 billion investment by Ultium Cells, a General Motors and LG Energy Solution joint venture, to build a battery cell manufacturing plant in Spring Hill, Tennessee.

ORNL’s Marie Kurz examines the many factors affecting the health of streams and watersheds. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Spanning no less than three disciplines, Marie Kurz’s title — hydrogeochemist — already gives you a sense of the collaborative, interdisciplinary nature of her research at ORNL.

Results show change in annual aridity for the years 2071-2100 compared to 1985-2014. Brown shadings (negative numbers) indicate drier conditions. Black dots indicate statistical significance at the 90% confidence level. Credit: Jiafu Mao/ORNL, U.S. Dept. of Energy

A new analysis from Oak Ridge National Laboratory shows that intensified aridity, or drier atmospheric conditions, is caused by human-driven increases in greenhouse gas emissions. The findings point to an opportunity to address and potentially reverse the trend by reducing emissions.

The Energy Exascale Earth System Model project reliably simulates aspects of earth system variability and projects decadal changes that will critically impact the U.S. energy sector in the future. A new version of the model delivers twice the performance of its predecessor. Credit: E3SM, Dept. of Energy

A new version of the Energy Exascale Earth System Model, or E3SM, is two times faster than an earlier version released in 2018.

This protein drives key processes for sulfide use in many microorganisms that produce methane, including Thermosipho melanesiensis. Researchers used supercomputing and deep learning tools to predict its structure, which has eluded experimental methods such as crystallography.  Credit: Ada Sedova/ORNL, U.S. Dept. of Energy

A team of scientists led by the Department of Energy’s Oak Ridge National Laboratory and the Georgia Institute of Technology is using supercomputing and revolutionary deep learning tools to predict the structures and roles of thousands of proteins with unknown functions.