Skip to main content
An ORNL-led team studied the SARS-CoV-2 spike protein in the trimer state, shown here, to pinpoint structural transitions that could be disrupted to destabilize the protein and negate its harmful effects. Credit: Debsindhu Bhowmik/ORNL, U.S. Dept. of Energy

To explore the inner workings of severe acute respiratory syndrome coronavirus 2, or SARS-CoV-2, researchers from ORNL developed a novel technique.

Researchers at Oak Ridge National Laboratory upcycled a common plastic to develop a novel reusable adhesive with exceptional strength and toughness.Carlos Jones/ORNL; U.S. Dept. of Energy

Researchers at ORNL used polymer chemistry to transform a common household plastic into a reusable adhesive with a rare combination of strength and ductility, making it one of the toughest materials ever reported.

This protein drives key processes for sulfide use in many microorganisms that produce methane, including Thermosipho melanesiensis. Researchers used supercomputing and deep learning tools to predict its structure, which has eluded experimental methods such as crystallography.  Credit: Ada Sedova/ORNL, U.S. Dept. of Energy

A team of scientists led by the Department of Energy’s Oak Ridge National Laboratory and the Georgia Institute of Technology is using supercomputing and revolutionary deep learning tools to predict the structures and roles of thousands of proteins with unknown functions.

ORNL’s Eva Zarkadoula seeks piezoelectric materials for sensors that can withstand irradiation, which causes cascading collisions that displace atoms and produces defects. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

To advance sensor technologies, Oak Ridge National Laboratory researchers studied piezoelectric materials, which convert mechanical stress into electrical energy, to see how they could handle bombardment with energetic neutrons.