Skip to main content
When exposed to radiation, electrons produced within molten zinc chloride, or ZnCl2, can be observed in three distinct singly occupied molecular orbital states, plus a more diffuse, delocalized state. Credit: Hung H. Nguyen/University of Iowa

In a finding that helps elucidate how molten salts in advanced nuclear reactors might behave, scientists have shown how electrons interacting with the ions of the molten salt can form three states with different properties. Understanding these states can help predict the impact of radiation on the performance of salt-fueled reactors.

ORNL researchers, from left, Yang Liu, Xiaohan Yang and Torik Islam, collaborated on the development of a new capability to insert multiple genes simultaneously for fast, efficient transformation of plants into better bioenergy feedstocks. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

In a discovery aimed at accelerating the development of process-advantaged crops for jet biofuels, scientists at ORNL developed a capability to insert multiple genes into plants in a single step.

Radu Custelcean's sustainable chemistry for capturing carbon dioxide from air has been licensed to Holocene. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

An innovative and sustainable chemistry developed at ORNL for capturing carbon dioxide has been licensed to Holocene, a Knoxville-based startup focused on designing and building plants that remove carbon dioxide

ytterbium

ORNL’s electromagnetic isotope separator, or EMIS, made history in 2018 when it produced 500 milligrams of the rare isotope ruthenium-96, unavailable anywhere else in the world. 

Jason Gardner, Sandra Davern and Peter Thornton have been elected fellows of AAAS. Credit: Laddy Fields/ORNL, U.S. Dept. of Energy

Three scientists from the Department of Energy’s Oak Ridge National Laboratory have been elected fellows of the American Association for the Advancement of Science, or AAAS.