Skip to main content
Alexey Serov researches ways to improve hydrogen fuel cells and materials and the electrolysis process. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

It would be a challenge for any scientist to match Alexey Serov’s rate of inventions related to green hydrogen fuel. But this researcher at ORNL has 84 patents with at least 35 more under review, so his electrifying pace is unlikely to slow down any time soon.

Saubhagya Rathore uses his modeling, hydrology and engineering expertise to improve understanding of the nation’s watersheds to better predict the future climate and to guide resilience strategies. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Growing up exploring the parklands of India where Rudyard Kipling drew inspiration for The Jungle Book left Saubhagya Rathore with a deep respect and curiosity about the natural world. He later turned that interest into a career in environmental science and engineering, and today he is working at ORNL to improve our understanding of watersheds for better climate prediction and resilience.

Jerry Parks leads the Molecular Biophysics group at ORNL, leveraging his expertise in computational chemistry and bioinformatics to unlock the inner workings of proteins—molecules that govern cellular structure and function and are essential to life. Credit: Genevieve Martin, ORNL/U.S. Dept. of Energy

When reading the novel Jurassic Park as a teenager, Jerry Parks found the passages about gene sequencing and supercomputers fascinating, but never imagined he might someday pursue such futuristic-sounding science.

Climate change often comes down to how it affects water, whether it’s for drinking, electricity generation, or how flooding affects people and infrastructure. To better understand these impacts, ORNL water resources engineer Sudershan Gangrade is integrating knowledge ranging from large-scale climate projections to local meteorology and hydrology and using high-performance computing to create a holistic view of the future.

Climate change often comes down to how it affects water, whether it’s for drinking, electricity generation, or how flooding affects people and infrastructure. To better understand these impacts, ORNL water resources engineer Sudershan Gangrade is integrating knowledge ranging from large-scale climate projections to local meteorology and hydrology and using high-performance computing to create a holistic view of the future.

Researchers at Oak Ridge National Laboratory discovered a tug-of-war strategy to enhance chemical separations needed to recover critical materials. Credit: Alex Ivanov/ORNL, U.S. Dept. of Energy

ORNL scientists combined two ligands, or metal-binding molecules, to target light and heavy lanthanides simultaneously for exceptionally efficient separation.

Researchers observe T-shaped cluster drives lanthanide separation system during liquid-liquid extraction. Credit: Alex Ivanov/ORNL, U.S. Dept. of Energy

Researchers at ORNL zoomed in on molecules designed to recover critical materials via liquid-liquid extraction — a method used by industry to separate chemically similar elements.

Researchers captured atomic-level insights on the rare-earth mineral monazite to inform future design of flotation collector molecules, illustrated above, that can aid in the recovery of critical materials. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Critical Materials Institute researchers at Oak Ridge National Laboratory and Arizona State University studied the mineral monazite, an important source of rare-earth elements, to enhance methods of recovering critical materials for energy, defense and manufacturing applications.