Skip to main content
ORNL’s David Sholl is director of the new DOE Energy Earthshot Non-Equilibrium Energy Transfer for Efficient Reactions center to help decarbonize the industrial chemical industry. Credit: Genevieve Martin, ORNL/U.S. Dept. of Energy

ORNL has been selected to lead an Energy Earthshot Research Center, or EERC, focused on developing chemical processes that use sustainable methods instead of burning fossil fuels to radically reduce industrial greenhouse gas emissions to stem climate change and limit the crisis of a rapidly warming planet.
 

Xiaohan Yang is using his expertise in synthetic biology and capabilities like the Advanced Plant Phenotyping Laboratory at Oak Ridge National Laboratory to accelerate the development of drought-tolerant, fast-growing bioenergy crops suited for conversion into clean jet fuels. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Scientist Xiaohan Yang’s research at the Department of Energy’s Oak Ridge National Laboratory focuses on transforming plants to make them better sources of renewable energy and carbon storage.

Michelle Kidder is the recipient of the 2023 American Chemical Society’s Mid-Career Award. Credit: ORNL, U.S. Dept. of Energy

Michelle Kidder, a senior R&D staff scientist at ORNL, has received the American Chemical Society’s Energy and Fuels Division’s Mid-Career Award for sustained and distinguished contributions to the field of energy and fuel chemistry.

ORNL-developed software tools for identifying and quantifying energy efficiency will be demonstrated to participants during an Energy Bootcamp sponsored by DOE’s Industrial Efficiency and Decarbonization Office. Credit: ORNL, U.S. Dept. of Energy

ORNL researchers have developed a training camp to help manufacturing industries reduce energy-related carbon dioxide emissions and improve cost savings.

ORNL will collaborate with Fairbanks Morse Defense on decarbonization efforts to develop alternative fuel technologies for marine engines. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL, the Department of Energy’s largest multidisciplinary laboratory, and Fairbanks Morse Defense, a portfolio company of Arcline Investment Management, have entered into a Memorandum of Understanding to collaborate on the development and integration of alternative fuel technologies aimed at reducing the marine engine’s reliance on fossil fuels. 

Innovation Crossroads cohort 7

Seven entrepreneurs will embark on a two-year fellowship as the seventh cohort of Innovation Crossroads kicks off this month at ORNL. Representing a range of transformative energy technologies, Cohort 7 is a diverse class of innovators with promising new companies.

 Illustration of a laser-based analytical method to accelerate understanding of critical plant and soil properties with the aim of co-optimizing bioenergy plant growth and soil carbon storage

Oak Ridge National Laboratory researchers recently demonstrated use of a laser-based analytical method to accelerate understanding of critical plant and soil properties that affect bioenergy plant growth and soil carbon storage.

TIP graphic

Scientist-inventors from ORNL will present seven new technologies during the Technology Innovation Showcase on Friday, July 14, from 8 a.m.–4 p.m. at the Joint Institute for Computational Sciences on ORNL’s campus.

ORNL researchers have enabled standard raised pavement markers to transmit GPS information that helps autonomous driving features function better in remote areas or in bad weather. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Working with Western Michigan University and other partners, ORNL engineers are placing low-powered sensors in the reflective raised pavement markers that are already used to help drivers identify lanes. Microchips inside the markers transmit information to passing cars about the road shape to help autonomous driving features function even when vehicle cameras or remote laser sensing, called LiDAR, are unreliable because of fog, snow, glare or other obstructions.

CFM’s RISE open fan engine architecture. Image: GE Aerospace

To support the development of a revolutionary new open fan engine architecture for the future of flight, GE Aerospace has run simulations using the world’s fastest supercomputer capable of crunching data in excess of exascale speed, or more than a quintillion calculations per second.