Skip to main content
Neutron computed tomography reveals how water is constrained to travel only along certain strands of a special yarn coated with a water-wicking compound and a biocatalytic enzyme. Credit: Yuxuan Zhang/ORNL, U.S. Dept. of Energy

Textile engineering researchers from North Carolina State University used neutrons at Oak Ridge National Laboratory to identify a special wicking mechanism in a type of cotton yarn that allows the fibers to control the flow of liquid across certain strands.

An international team of researchers used Summit to model spin, charge and pair-density waves in cuprates, a type of copper alloy, to explore the materials’ superconducting properties. The results revealed new insights into the relationships between these dynamics as superconductivity develops. Credit: Jason Smith/ORNL

A study led by researchers at ORNL used the nation’s fastest supercomputer to close in on the answer to a central question of modern physics that could help conduct development of the next generation of energy technologies.

ORNL scientists used an electron beam for precision machining of nanoscale materials. Cubes were milled to change their shape and could also be removed from an array. Credit: Kevin Roccapriore/ORNL, U.S. Dept. of Energy

Drilling with the beam of an electron microscope, scientists at ORNL precisely machined tiny electrically conductive cubes that can interact with light and organized them in patterned structures that confine and relay light’s electromagnetic signal.

Three ORNL scientists have been elected fellows of the American Association for the Advancement of Science, or AAAS, the world’s largest general scientific society and publisher of the Science family of journals. Credit: ORNL, U.S. Dept. of Energy

Three ORNL scientists have been elected fellows of the American Association for the Advancement of Science, or AAAS, the world’s largest general scientific society and publisher of the Science family of journals.

ORNL researchers observed that atomic vibrations in a twisted crystal result in winding energetic waves that govern heat transport, which may help new materials better manage heat. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

A discovery by Oak Ridge National Laboratory researchers may aid the design of materials that better manage heat.

Ten scientists from the Department of Energy’s Oak Ridge National Laboratory are among the world’s most highly cited researchers. Credit: ORNL, U.S. Dept. of Energy

Ten scientists from the Department of Energy’s Oak Ridge National Laboratory are among the world’s most highly cited researchers, according to a bibliometric analysis conducted by the scientific publication analytics firm Clarivate.

ORNL researchers used neutrons at the lab’s Spallation Neutron Source to analyze modified high-entropy metal alloys with enhanced strength and ductility, or the ability to stretch, under high-stress without failing. Credit: Rui Feng/ORNL, U.S. Dept. of Energy
Researchers at Oak Ridge National Laboratory have developed a method of adding nanostructures to high-entropy metal alloys, or HEAs, that enhance both strength and ductility, which is the ability to deform or stretch
Larry Baylor, left, and Andrew Lupini have been elected fellows of the American Physical Society. Credit: ORNL, U.S. Dept. of Energy

ORNL's Larry Baylor and Andrew Lupini have been elected fellows of the American Physical Society.

Compression (red arrows) alters crystal symmetry (green arrows), which changes band dispersion (left and right), leading to highly mobile electrons. Credit: Jaimee Janiga, Andrew Sproles, Satoshi Okamoto/ORNL, U.S. Dept. of Energy

A team led by the ORNL has found a rare quantum material in which electrons move in coordinated ways, essentially “dancing.”

Researchers built optical tools called zero-mode waveguides, illustrated here, used to observe proteins that are implicated in human heart function. Credit: David S. White/University of Wisconsin-Madison

Researchers working with Oak Ridge National Laboratory developed a new method to observe how proteins, at the single-molecule level, bind with other molecules and more accurately pinpoint certain molecular behavior in complex