Skip to main content
This protein drives key processes for sulfide use in many microorganisms that produce methane, including Thermosipho melanesiensis. Researchers used supercomputing and deep learning tools to predict its structure, which has eluded experimental methods such as crystallography.  Credit: Ada Sedova/ORNL, U.S. Dept. of Energy

A team of scientists led by the Department of Energy’s Oak Ridge National Laboratory and the Georgia Institute of Technology is using supercomputing and revolutionary deep learning tools to predict the structures and roles of thousands of proteins with unknown functions.

ORNL’s Larry York studies how plant root traits contribute to crop productivity. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Biologist Larry York’s fascination with plant roots has spurred his research across four continents and inspired him to create accessible tools that enable others to explore the underground world.

Ten scientists from the Department of Energy’s Oak Ridge National Laboratory are among the world’s most highly cited researchers. Credit: ORNL, U.S. Dept. of Energy

Ten scientists from the Department of Energy’s Oak Ridge National Laboratory are among the world’s most highly cited researchers, according to a bibliometric analysis conducted by the scientific publication analytics firm Clarivate.

Carrie Eckert

Carrie Eckert applies her skills as a synthetic biologist at ORNL to turn microorganisms into tiny factories that produce a variety of valuable fuels, chemicals and materials for the growing bioeconomy.

ORNL researchers produced self-healable and highly adhesive elastomers, proving they self-repair in ambient conditions and underwater. This project garnered a 2021 R&D 100 Award. Credit: ORNL, U.S. Dept. of Energy

Research teams from the Department of Energy’s Oak Ridge National Laboratory and their technologies have received seven 2021 R&D 100 Awards, plus special recognition for a COVID-19-related project.

A traffic-camera view of Shallowford Road, one of the more than 350 intersections in Chattanooga studied by Oak Ridge National Laboratory researchers.

The daily traffic congestion along the streets and interstate lanes of Chattanooga could be headed the way of the horse and buggy with help from ORNL researchers.

AIST Conference

As the United States transitions to clean energy, the country has an ambitious goal: cut carbon dioxide emissions in half by the year 2030, if not before. One of the solutions to help meet this challenge is found at ORNL as part of the Better Plants Program.

ORNL metabolic engineer Adam Guss develops genetic tools to modify microbes that can perform a range of processes needed to create sustainable biofuels and bioproducts. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

As a metabolic engineer at Oak Ridge National Laboratory, Adam Guss modifies microbes to perform the diverse processes needed to make sustainable biofuels and bioproducts.

This spring, Brood X cicadas emerged from the ground after 17 years burrowed and swarmed across the eastern United States, leaving a trail of exoskeletons and echoes of mating calls. Cicadas emerge in such large quantities to withstand predation and successfully maintain their populations, and trees actually play a key role in their life cycle. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

On the road leading to Oak Ridge National Laboratory, drivers may notice that many of the green trees lining the entrance to the lab are dappled with brown leaves. Just weeks past the summer solstice, this phenomenon is out of place and is in fact evidence of another natural occurrence: cicada “flagging.”

Researchers studying secondary metabolites in the fungus Aspergillus flavus, pictured, found unique mixes of metabolites corresponding to genetically distinct populations. The finding suggests local environmental conditions play a key role in secondary metabolite production, influencing the discovery of drugs and other useful compounds. Credit: Tomás Allen Rush/ORNL, U.S. Dept. of Energy.

Scientists at ORNL and the University of Wisconsin–Madison have discovered that genetically distinct populations within the same species of fungi can produce unique mixes of secondary metabolites, which are organic compounds with applications in