Skip to main content
Blue sky above ORNL campus.

ORNL and three partnering institutions have received $4.2 million over three years to apply artificial intelligence to the advancement of complex systems in which human decision making could be enhanced via technology.

ORNL assisted in investigating proteins called porins, one shown in red, which are found in the protective outer membrane of certain disease-causing bacteria and tether the membrane to the cell wall. Credit: Hyea (Sunny) Hwang/Georgia Tech and ORNL, U.S. Dept. of Energy

Scientists from Oak Ridge National Laboratory used high-performance computing to create protein models that helped reveal how the outer membrane is tethered to the cell membrane in certain bacteria.

ORNL researchers and energy storage startup Sparkz have developed a cobalt-free cathode material for use in lithium-ion batteries Credit: Ilias Belharouak/Oak Ridge National Laboratory, U.S. Dept. of Energy

Four research teams from the Department of Energy’s Oak Ridge National Laboratory and their technologies have received 2020 R&D 100 Awards.

ORNL researchers developed a quantum, or squeezed, light approach for atomic force microscopy that enables measurement of signals otherwise buried by noise. Credit: Raphael Pooser/ORNL, U.S. Dept. of Energy

Researchers at ORNL used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

Quantum Science Center

The Department of Energy has selected Oak Ridge National Laboratory to lead a collaboration charged with developing quantum technologies that will usher in a new era of innovation.

Researcher Chase Joslin uses Peregrine software to monitor and analyze a component being 3D printed at the Manufacturing Demonstration Facility at ORNL. Credit: Luke Scime/ORNL, U.S. Dept. of Energy.

Oak Ridge National Laboratory researchers have developed artificial intelligence software for powder bed 3D printers that assesses the quality of parts in real time, without the need for expensive characterization equipment.

Analyses of lung fluid cells from COVID-19 patients conducted on the nation’s fastest supercomputer point to gene expression patterns that may explain the runaway symptoms produced by the body’s response to SARS-CoV-2. Credit: Jason B. Smith/ORNL, U.S. Dept. of Energy

A team led by Dan Jacobson of Oak Ridge National Laboratory used the Summit supercomputer at ORNL to analyze genes from cells in the lung fluid of nine COVID-19 patients compared with 40 control patients.

Sergei Kalinin

Five researchers at the Department of Energy’s Oak Ridge National Laboratory have been named ORNL Corporate Fellows in recognition of significant career accomplishments and continued leadership in their scientific fields.

Computational biophysicist Ada Sedova is using experiments and high-performance computing to explore the properties of biological systems and predict their form and function, including research to accelerate drug discovery for COVID-19. Photo credit: Jason Richards, Oak Ridge National Laboratory, U.S. Dept. of Energy.

Ada Sedova’s journey to Oak Ridge National Laboratory has taken her on the path from pre-med studies in college to an accelerated graduate career in mathematics and biophysics and now to the intersection of computational science and biology

The protease protein is both shaped like a heart and functions as one, allowing the virus replicate and spread. Inhibiting the protease would block virus reproduction. Credit: Andrey Kovalevsky/ORNL, U.S. Dept. of Energy

A team of researchers has performed the first room-temperature X-ray measurements on the SARS-CoV-2 main protease — the enzyme that enables the virus to reproduce.