Skip to main content
Caption: Jaswinder Sharma makes battery coin cells with a lightweight current collector made of thin layers of aligned carbon fibers in a polymer with carbon nanotubes. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Electric vehicles can drive longer distances if their lithium-ion batteries deliver more energy in a lighter package. A prime weight-loss candidate is the current collector, a component that often adds 10% to the weight of a battery cell without contributing energy.

ORNL intern Jack Orebaugh holds the drone used in his research to help locate human remains. Credit: Lena Shoemaker/ORNL, U.S. Dept. of Energy

Jack Orebaugh, a forensic anthropology major at the University of Tennessee, Knoxville, has a big heart for families with missing loved ones. When someone disappears in an area of dense vegetation, search and recovery efforts can be difficult, especially when a missing person’s last location is unknown. Recognizing the agony of not knowing what happened to a family or friend, Orebaugh decided to use his internship at the Department of Energy’s Oak Ridge National Laboratory to find better ways to search for lost and deceased people using cameras and drones. 

Symposium guests view posters in the poster competition. Credit: Laetitia Delmau/ORNL, U.S. Dept. of Energy

The 21st Symposium on Separation Science and Technology for Energy Applications, Oct. 23-26 at the Embassy Suites by Hilton West in Knoxville, attracted 109 researchers, including some from Austria and the Czech Republic. Besides attending many technical sessions, they had the opportunity to tour the Graphite Reactor, High Flux Isotope Reactor and both supercomputers at ORNL.

From left, researchers Syed Islam and Ramesh Bhave discuss the nickel sulfate recovered from end-of-life lithium-ion batteries using the membrane solvent extraction process they co-invented at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Scientists at ORNL have developed a technique for recovering and recycling critical materials that has garnered special recognition from a peer-reviewed materials journal and received a new phase of funding for research and development.

Pictured is Venugopal Koikal Varma, group leader for ORNL’s Remote Systems group. ORNL, U.S. Dept. of Energy

ORNL will lead a new DOE-funded project designed to accelerate bringing fusion energy to the grid. The Accelerate award focuses on developing a fusion power plant design concept that supports remote maintenance and repair methods for the plasma-facing components in fusion power plants.

Howard Wilson and Gary Staebler

Two fusion energy leaders have joined ORNL in the Fusion and Fission Energy and Science Directorate, or FFESD.

Debjani Pal’s photo “Three-Dimensional Breast Cancer Spheroids” won the Director’s Choice Award in Oak Ridge National Laboratory’s Art of Science photo competition. It will be displayed at the American Museum of Science and Energy in Oak Ridge, Tenn. Credit: Debjani Pal/ORNL, U.S. Dept. of Energy
“Three-Dimensional Breast Cancer Spheroids” submitted by radiotherapeutics researcher Debjani Pal is stunning. Brilliant blue dots pop from an electric sphere threaded with bright colors: greens, aqua, hot pink and red.
ORNL researchers contributed biomass resources analysis to a new report that says carbon dioxide removal targets can be reached by 2050 using existing technology. Source: Jason Richards/ORNL, U.S. Dept. of Energy

Scientists from more than a dozen institutions have completed a first-of-its-kind high-resolution assessment of carbon dioxide removal potential in the United States, charting a path to achieve a net-zero greenhouse gas economy by 2050.

Naval Academy midshipmen look at tiny particle fuels while touring ORNL. Credit: Lena Shoemaker/ORNL, U.S. Dept. of Energy

Nuclear engineering students from the United States Military Academy and United States Naval Academy are working with researchers at ORNL to complete design concepts for a nuclear propulsion rocket to go to space in 2027 as part of the Defense Advanced Research Projects Agency DRACO program.

Frontier’s exascale power enables the Simple Cloud-Resolving E3SM Atmosphere Model to run years’ worth of climate simulations at unprecedented speed and scale. Credit: Ben Hillman/Sandia National Laboratories, U.S. Dept. of Energy

A 19-member team of scientists from across the national laboratory complex won the Association for Computing Machinery’s 2023 Gordon Bell Special Prize for Climate Modeling for developing a model that uses the world’s first exascale supercomputer to simulate decades’ worth of cloud formations.