Skip to main content
Victor Fung is a Eugene P. Wigner Fellow at Oak Ridge National Laboratory

Eugene P. Wigner Fellow Victor Fung’s story is proof that a series of positive experiences around science and happy accidents can lead to a rewarding research career. He joined ORNL in 2019.

Image caption: An ORNL research team lead is developing a universal benchmark for the accuracy and performance of quantum computers based on quantum chemistry simulations. The benchmark will help the community evaluate and develop new quantum processors. (Below left: schematic of one of quantum circuits used to test the RbH molecule. Top left: molecular orbitals used. Top right: actual results obtained using the bottom left circuit for RbH).

Researchers at ORNL have developed a quantum chemistry simulation benchmark to evaluate the performance of quantum devices and guide the development of applications for future quantum computers.

Friederike Bock, a Eugene P. Wigner Fellow

Friederike Bock, a Eugene P. Wigner Fellow, wants everyone to know scientists aren’t just robots—they want to help others understand their research, and they have wide-ranging interests.

The students analyzed diatom images like this one to compare wild and genetically modified strains of these organisms. Credit: Alison Pawlicki/Oak Ridge National Laboratory, US Department of Energy.

Students often participate in internships and receive formal training in their chosen career fields during college, but some pursue professional development opportunities even earlier.

Nanofabricated “golden lollipop” helps researchers observe Fano interference using electron microscopy techniques at Oak Ridge National Laboratory.

Electrons in atoms are pretty talented. They can form chemical bonds, get kicked out of the atom and even “jump” to different locations based on their energetic states.

As part of DOE’s HPC4Mobility initiative ORNL researchers developed machine learning algorithms that can control smart traffic lights at intersections to facilitate the smooth flow of traffic and increase fuel efficiency.

A modern, healthy transportation system is vital to the nation’s economic security and the American standard of living. The U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL) is engaged in a broad portfolio of scientific research for improved mobility

Weiju Ren’s knowledgebase is making the nuclear world safer. Called DOE’s Gen IV Materials Handbook, it manages data about structural materials for the Very High Temperature Reactor. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Six new nuclear reactor technologies are set to deploy for commercial use between 2030 and 2040. Called Generation IV nuclear reactors, they will operate with improved performance at dramatically higher temperatures than today’s reactors.

ORNL scientist Nina Balke uses scanning probe microscopy to explore materials’ nanoscale properties and push boundaries in nanomaterials for energy applications. Credit: Genevieve Martin/Oak Ridge National Laboratory; U.S. Dept. of Energy

When Nina Balke came to the United States on a Feodor Lynen Fellowship for German scholars, her original plan was to complete a year abroad and return home to native opportunities in materials sciences. 

Oak Ridge National Laboratory’s Ramesh Bhave co-invented a process to recover high-purity rare earth elements from scrapped magnets of computer hard drives (shown here) and other post-consumer wastes. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Rare earth elements are the “secret sauce” of numerous advanced materials for energy, transportation, defense and communications applications.

Raphaël Hermann of Oak Ridge National Laboratory studies magnetic materials and batteries using Mössbauer spectroscopy.

Raphaël Hermann of the Department of Energy’s Oak Ridge National Laboratory conducts experiments to better understand materials for energy and information applications.