Skip to main content
The Advanced Reactors Technical Summit III, hosted by Oak Ridge National Laboratory Feb. 10-11, had a record 180-plus participants. (Photo by Rachel Brooks)

Moving advanced nuclear reactors from the drawing board to the field was the focus of the Advanced Reactors Technical Summit III, hosted by the Department of Energy’s Oak Ridge National Laboratory and attended by 180 experts from industry, government and academia. The conference, ...

Default image of ORNL entry sign
Inspections will play a crucial role in the decisions to extend operating licenses for many of the nation’s aging nuclear power plants, and Oak Ridge National Laboratory has a tool that could help. “The question that needs to be answered is whether the concrete structures th...
Default image of ORNL entry sign
Oak Ridge National Laboratory is marking the 50th anniversary of the startup of its Molten Salt Reactor Experiment this month. A workshop on molten salt reactor technologies Oct. 15-16 at ORNL will bring together government representatives, U.S. and international researchers, ...
Pellet selector

When it’s up and running, the ITER fusion reactor will be very big and very hot, with more than 800 cubic meters of hydrogen plasma reaching 170 million degrees centigrade. The systems that fuel and control it, on the other hand, will be small and very cold. Pellets of frozen gas will be shot int...

The Neutron Sciences Directorate’s two most recent distinguished fellows, Panchao Yin (left) and Bianca Haberl (below), are making major contributions to their respective fields. Image credit - Genevieve Martin
For early career researchers, a fellowship can be a valuable foot in the door, exposing them to the opportunity to gain experience in areas of science and technology of national importance.
Oak Ridge National Laboratory
Crude oil refinement can be an extremely costly chemical process. In an effort to reduce energy and cost demands, Oak Ridge National Laboratory researchers Anibal Ramirez-Cuesta and Stuart Campbell are collaborating with University of Nottingham (UK) researchers to develop metal-orga...
ORNL Image
Scientists at the US Department of Energy’s Oak Ridge National Laboratory are learning how the properties of water molecules on the surface of metal oxides can be used to better control these minerals and use them to make products such as more efficient semiconductors for organic light emitting diodes and solar cells, safer vehicle glass in fog and frost, and more environmentally friendly chemical sensors for industrial applications.
Default image of ORNL entry sign
Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not only stays intact but also may drive the ball farther than conventional clubs. In light of this contrast, the nature of glass seems anything but clear.
Default image of ORNL entry sign
Complex oxides have long tantalized the materials science community for their promise in next-generation energy and information technologies. Complex oxide crystals combine oxygen atoms with assorted metals to produce unusual and very desirable properties.
Default image of ORNL entry sign
Blowing bubbles may be fun for kids, but for engineers, bubbles can disrupt fluid flow and damage metal.