Skip to main content
ORNL has modeled the spike protein that binds the novel coronavirus to a human cell for better understanding of the dynamics of COVID-19. Credit: Stephan Irle/ORNL, U.S. Dept. of Energy

To better understand the spread of SARS-CoV-2, the virus that causes COVID-19, Oak Ridge National Laboratory researchers have harnessed the power of supercomputers to accurately model the spike protein that binds the novel coronavirus to a human cell receptor.

Associate Laboratory Director Kathy McCarthy heads the ORNL directorate that manages proto-MPEX, a linear plasma device that informs the development of the MPEX tool for study of fusion materials. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

From the helm of a one-of-a-kind organization that brings nuclear fusion and fission expertise together to pave the way to expanding carbon-free energy, Kathy McCarthy can trace the first step of her engineering career back to

INFUSE logo

The INFUSE fusion program announced a second round of 2020 public-private partnership awards to accelerate fusion energy development.

ORNL researchers in advanced manufacturing, materials science and engineering collaborated to produce face shields and reusable mask molds so that industry can quickly mass produce. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

The University of Texas at San Antonio (UTSA) has formally launched the Cybersecurity Manufacturing Innovation Institute (CyManII), a $111 million public-private partnership.

Chuck Kessel

Chuck Kessel was still in high school when he saw a scientist hold up a tiny vial of water and say, “This could fuel a house for a whole year.”

MPEX ribbon cutting

Department of Energy Under Secretary for Science Paul Dabbar joined Oak Ridge National Laboratory leaders for a ribbon-cutting ceremony to mark progress toward a next-generation fusion materials project.

Light moves through a fiber and stimulates the metal electrons in nanotip into collective oscillations called surface plasmons, assisting electrons to leave the tip. This simple electron nano-gun can be made more versatile via different forms of material composition and structuring. Credit: Ali Passian/ORNL, U.S. Dept. of Energy

Scientists at ORNL and the University of Nebraska have developed an easier way to generate electrons for nanoscale imaging and sensing, providing a useful new tool for material science, bioimaging and fundamental quantum research.

Innovation Network for Fusion Energy, or INFUSE

The Department of Energy announced awards for 10 projects with private industry that will allow for collaboration with DOE national laboratories in accelerating fusion energy development.

This photo shows the interior of the vessel of the General Atomics DIII-D National Fusion Facility in San Diego, where ORNL researchers are testing the suitability of tungsten to armor the inside of a fusion device. Credit: General Atomics

The inside of future nuclear fusion energy reactors will be among the harshest environments ever produced on Earth. What’s strong enough to protect the inside of a fusion reactor from plasma-produced heat fluxes akin to space shuttles reentering Earth’s atmosphere?

Quantum Science Center

The Department of Energy has selected Oak Ridge National Laboratory to lead a collaboration charged with developing quantum technologies that will usher in a new era of innovation.