Skip to main content
ORNL is studying how climate change may impact water availability for hydropower facilities such as the Shasta Dam and Lake in California. Credit: U.S. Bureau of Reclamation

ORNL has provided hydropower operators with new data to better prepare for extreme weather events and shifts in seasonal energy demands caused by climate change.

Researchers used quantum Monte Carlo calculations to accurately render the structure and electronic properties of germanium selenide, a semiconducting nanomaterial. Credit: Paul Kent/ORNL, U.S. Dept. of Energy

A multi-lab research team led by ORNL's Paul Kent is developing a computer application called QMCPACK to enable precise and reliable predictions of the fundamental properties of materials critical in energy research.

Melton Hill Dam

To further the potential benefits of the nation’s hydropower resources, researchers at Oak Ridge National Laboratory have developed and maintain a comprehensive water energy digital platform called HydroSource.

Oak Ridge National Laboratory’s Ramesh Bhave partnered with Momentum Technologies to develop a modular, scalable system for recycling scrap permanent magnets in e-waste. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory and Momentum Technologies have piloted an industrial-scale process for recycling valuable materials in the millions of tons of e-waste generated annually in the United States.

non-powered dam

Although more than 92,000 dams populate the country, the vast majority — about 89,000 — do not generate electricity through hydropower.

ORNL researchers deploy a gas trap to measure ebullitive (bubbling) emissions of methane at the Melton Dam in East Tennessee. The trap is deployed for ~ 24 hours to allow gas to accumulate in the trap. Credit: Carlos Jones/ORNL, US Dept. of Energy

As the United States moves toward more sustainable and renewable sources of energy, hydropower is expected to play a pivotal role in integrating more intermittent renewables like wind and solar to the electricity grid

Oak Ridge National Laboratory scientists are enhancing the performance of polymer materials for next-generation lithium batteries. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory are using state-of-the-art methods to shed light on chemical separations needed to recover rare-earth elements and secure critical materials for clean energy technologies.

A large generator is installed at the Meldahl hydropower plant in Kentucky. The energy sector anticipates longer lead times in procuring such large components for increasing construction and modernization of U.S. hydropower plants. Credit: American Municipal Power

A new Department of Energy report produced by Oak Ridge National Laboratory identifies several supply chain must-haves in maintaining the pivotal role hydropower will play in decarbonizing the nation’s grid.

ORNL’s Brenda Pracheil, left, and Kristine Moody collect water samples at Melton Hill Lake using a sophisticated instrument that collects DNA in the water to determine fish species and number of fish in the water, which could prove useful for monitoring hydropower impacts. Credit: Carlos Jones, ORNL/U.S Dept. of Energy

Researchers at Oak Ridge National Laboratory are using a novel approach in determining environmental impacts to aquatic species near hydropower facilities, potentially leading to smarter facility designs that can support electrical grid reliability.

ORNL’s green solvent enables environmentally friendly recycling of valuable Li-ion battery materials. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory have developed a solvent that results in a more environmentally friendly process to recover valuable materials from used lithium-ion batteries, supports a stable domestic supply chain for new batteries