Skip to main content
Mirko Musa was always fascinated by the power of rivers, specifically how these mighty waterways sculpt landscapes. Now, as a water power researcher, he’s finding ways to harness that power and protect rivers at the same time. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Mirko Musa spent his childhood zigzagging his bike along the Po River. The Po, Italy’s longest river, cuts through a lush valley of grain and vegetable fields, which look like a green and gold ocean spreading out from the river’s banks. 

Climate change often comes down to how it affects water, whether it’s for drinking, electricity generation, or how flooding affects people and infrastructure. To better understand these impacts, ORNL water resources engineer Sudershan Gangrade is integrating knowledge ranging from large-scale climate projections to local meteorology and hydrology and using high-performance computing to create a holistic view of the future.

Climate change often comes down to how it affects water, whether it’s for drinking, electricity generation, or how flooding affects people and infrastructure. To better understand these impacts, ORNL water resources engineer Sudershan Gangrade is integrating knowledge ranging from large-scale climate projections to local meteorology and hydrology and using high-performance computing to create a holistic view of the future.

ORNL’s Adam Guss and colleagues used synthetic biology to develop a custom microbe capable of converting deconstructed mixed plastic waste into valuable new materials. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Scientists working on a solution for plastic waste have developed a two-step chemical and biological process to break down and upcycle mixed plastics into valuable bioproducts.

Conduit hydropower presents opportunities in every state. Credit: ORNL, U.S. Dept. of Energy

Millions of miles of pipelines and conduits across the United States make up an intricate network of waterways used for municipal, agricultural and industrial purposes.

ORNL is studying how climate change may impact water availability for hydropower facilities such as the Shasta Dam and Lake in California. Credit: U.S. Bureau of Reclamation

ORNL has provided hydropower operators with new data to better prepare for extreme weather events and shifts in seasonal energy demands caused by climate change.

ORNL researchers deploy a gas trap to measure ebullitive (bubbling) emissions of methane at the Melton Dam in East Tennessee. The trap is deployed for ~ 24 hours to allow gas to accumulate in the trap. Credit: Carlos Jones/ORNL, US Dept. of Energy

As the United States moves toward more sustainable and renewable sources of energy, hydropower is expected to play a pivotal role in integrating more intermittent renewables like wind and solar to the electricity grid

ORNL scientists created a new microbial trait mapping process that improves on classical protoplast fusion techniques to identify the genes that trigger desirable genetic traits like improved biomass processing. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy. Reprinted with the permission of Oxford University Press, publisher of Nucleic Acids Research

ORNL scientists had a problem mapping the genomes of bacteria to better understand the origins of their physical traits and improve their function for bioenergy production.

Carrie Eckert

Carrie Eckert applies her skills as a synthetic biologist at ORNL to turn microorganisms into tiny factories that produce a variety of valuable fuels, chemicals and materials for the growing bioeconomy.

ORNL metabolic engineer Adam Guss develops genetic tools to modify microbes that can perform a range of processes needed to create sustainable biofuels and bioproducts. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

As a metabolic engineer at Oak Ridge National Laboratory, Adam Guss modifies microbes to perform the diverse processes needed to make sustainable biofuels and bioproducts.

ORNL’s Josh Michener, a microbiologist and metabolic engineer, led the discovery of a useful new enzyme that breaks down stubborn bonds in lignin, a polymer found in plants that typically becomes waste during bioconversion. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

In a step toward increasing the cost-effectiveness of renewable biofuels and bioproducts, scientists at ORNL discovered a microbial enzyme that degrades tough-to-break bonds in lignin, a waste product of biorefineries.