Skip to main content
From left, Clarice Phelps, Jimmie Selph and Rich Franco are ORNL personnel who teach classes in the Chemical Radiation Technology Pathway program at Pellissippi State Community College.

Students from the first class of ORNL and Pellissippi State Community College's joint Chemical Radiation Technology Pathway toured isotope facilities at ORNL.

Caption: Participants gather for a group photo after discussing securing AI systems for critical national security data and applications.  Photo by Liz Neunsinger/ORNL, U.S. Dept. of Energy

Researchers at the Department of Energy’s Oak Ridge National Laboratory met recently at an AI Summit to better understand threats surrounding artificial intelligence. The event was part of ORNL’s mission to shape the future of safe and secure AI systems charged with our nation’s most precious data. 

Frontier supercomputer sets new standard in molecular simulation

When scientists pushed the world’s fastest supercomputer to its limits, they found those limits stretched beyond even their biggest expectations. In the latest milestone, a team of engineers and scientists used Frontier to simulate a system of nearly half a trillion atoms — the largest system ever modeled and more than 400 times the size of the closest competition.

From left, J.D. Rice, Trevor Michelson and Chris Seck look at a monitor in Seck’s lab. The three are wearing safety glasses to protect against the laser beams used by the scanning vibrometer, which is helping Seck quantify vibration of an appliance in his lab. Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL scientists are working on a project to engineer and develop a cryogenic ion trap apparatus to simulate quantum spin liquids, a key research area in materials science and neutron scattering studies.

Joon-Seok Kim Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Researchers at ORNL are using a machine-learning model to answer ‘what if’ questions stemming from major events that impact large numbers of people. By simulating an event, such as extreme weather, researchers can see how people might respond to adverse situations, and those outcomes can be used to improve emergency planning.

Quietly making noise: Measuring differential privacy could balance meaningful analytics and identity protection

To balance personal safety and research innovation, researchers at ORNL are employing a mathematical technique known as differential privacy to provide data privacy guarantees.

colors

Simulations performed on the Summit supercomputer at ORNL are cutting through that time and expense by helping researchers digitally customize the ideal alloy. 

Architects of the Adaptable IO System, seen here with Frontier's Orion file system: Scott Klasky, left, heads the ADIOS project and leads ORNL's Workflow Systems group, and Norbert Podhorszki, an ORNL computer scientist, oversees ADIOS's continuing development. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Integral to the functionality of ORNL's Frontier supercomputer is its ability to store the vast amounts of data it produces onto its file system, Orion. But even more important to the computational scientists running simulations on Frontier is their capability to quickly write and read to Orion along with effectively analyzing all that data. And that’s where ADIOS comes in.

Shift Thermal co-founders Mitchell Ishamel, left, and Levon Atoyan stand in front of one of the company’s ice thermal energy storage modules, which will be submitted to independent measurement and validation testing in May. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Shift Thermal, a member of Innovation Crossroads’ first cohort of fellows, is commercializing advanced ice thermal energy storage for HVAC, shifting the cooling process to be more sustainable, cost-effective and resilient. Shift Thermal wants to enable a lower-cost, more-efficient thermal energy storage method to provide long-duration resilient cooling when the electric grid is down. 

Credit: Tyler Spano/ORNL, U.S. Dept. of Energy

Nuclear nonproliferation scientists at ORNL have published the Compendium of Uranium Raman and Infrared Experimental Spectra, a public database and analysis of structure-spectral relationships for uranium minerals. This first-of-its-kind dataset and corresponding analysis fill a key gap in the existing body of knowledge for mineralogists and actinide scientists.