Skip to main content
Water from local creeks now flows through these simulated streams in the Aquatic Ecology Laboratory, providing new opportunities to study mercury pollution and advance solutions. Credit: ORNL, U.S. Dept. of Energy

New capabilities and equipment recently installed at the Department of Energy’s Oak Ridge National Laboratory are bringing a creek right into the lab to advance understanding of mercury pollution and accelerate solutions.

stacked poplar logs

Popular wisdom holds tall, fast-growing trees are best for biomass, but new research by two U.S. Department of Energy national laboratories reveals that is only part of the equation.

Xunxiang Hu, a Eugene P. Wigner Fellow in ORNL’s Materials Science and Technology Division, designed this machine to produce large, crack-free pieces of yttrium hydride to be used as a moderator in the core of ORNL’s Transformational Challenge Reactor and other microreactors. Credit: Xunxiang Hu/ORNL, U.S. Dept. of Energy

About 60 years ago, scientists discovered that a certain rare earth metal-hydrogen mixture, yttrium, could be the ideal moderator to go inside small, gas-cooled nuclear reactors.

A selfie from the Curiosity rover as it explores the surface of Mars. Like many spacecraft, Curiosity uses a radioisotope power system to help fuel its mission. Credit: NASA/JPL-Caltech/MSSS

Radioactive isotopes power some of NASA’s best-known spacecraft. But predicting how radiation emitted from these isotopes might affect nearby materials is tricky

Paul Abraham uses mass spectrometry to study proteins.

Systems biologist Paul Abraham uses his fascination with proteins, the molecular machines of nature, to explore new ways to engineer more productive ecosystems and hardier bioenergy crops.

3D-printed 316L steel has been irradiated along with traditionally wrought steel samples. Researchers are comparing how they perform at various temperatures and varying doses of radiation. Credit: Jaimee Janiga/ORNL

It’s a new type of nuclear reactor core. And the materials that will make it up are novel — products of Oak Ridge National Laboratory’s advanced materials and manufacturing technologies.

A structural model of HgcA, shown in cyan, and HgcB, shown in purple, were created using metagenomic techniques to better understand the transformation of mercury into its toxic form, methylmercury. Photo credit: Connor Cooper/ORNL, U.S. Dept of Energy

A team led by ORNL created a computational model of the proteins responsible for the transformation of mercury to toxic methylmercury, marking a step forward in understanding how the reaction occurs and how mercury cycles through the environment.

At the U.S. Department of Energy Manufacturing Demonstration Facility at ORNL, this part for a scaled-down prototype of a reactor was produced for industry partner Kairos Power.

Scientists at the Department of Energy Manufacturing Demonstration Facility at ORNL have their eyes on the prize: the Transformational Challenge Reactor, or TCR, a microreactor built using 3D printing and other new approaches that will be up and running by 2023.

Ecosystem Ecologist Verity Salmon captures and analyzes field data from sites in in Alaska and Minnesota to inform earth system models that are being used to predict environmental change.

While some of her earth system modeling colleagues at ORNL face challenges such as processor allocation or debugging code, Verity Salmon prepares for mosquito swarms and the possibility of grizzly bears.

Researchers discovered the Tennessee cavesnail, Antrorbis tennesseensis, in caves near Oak Ridge National Laboratory. The snail measures in at less than 2 millimeters long. Credit: Nathaniel Shoobs and Matthew Niemiller

Sometimes conducting big science means discovering a species not much larger than a grain of sand.